The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential

We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-8
Hauptverfasser: Ling, Jiaxuan, Deng, Wei, Wei, Shiwei, Liu, Siqin, Wei, Shuliu, He, Lihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Ling, Jiaxuan
Deng, Wei
Wei, Shiwei
Liu, Siqin
Wei, Shuliu
He, Lihua
description We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly.
doi_str_mv 10.1109/TGRS.2024.3397811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055177561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055177561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-e17c7255839c051cd2dacc6d09dfd066f2373cc71268bca989cf97075bc1861c3</originalsourceid><addsrcrecordid>eNotkEFPAjEQhRujiYj-AG9NPC922m27PSogYjAaxHNTul0sWXeh7Zrw710Cp5dM3pt58yF0D2QEQNTjarb8GlFC8xFjShYAF2gAnBcZEXl-iQYElMhooeg1uolxSwjkHOQAva1-HH5vS1f7ZoPbCrNsgidjvHTRx-T_fDrgZxNdidsGz5vkNsHUeLrvTPL9pA98tsk1yZv6Fl1Vpo7u7qxD9P0yXY1fs8XHbD5-WmSWUp4yB9JK2ldjyhIOtqSlsVaURJVVSYSoKJPMWglUFGtrVKFspSSRfG2hEGDZED2c9u5Cu-9cTHrbdqHpT2pGeP-V5AJ6F5xcNrQxBlfpXfC_Jhw0EH1Epo_I9BGZPiNj_zzAXRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055177561</pqid></control><display><type>article</type><title>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</title><source>IEEE Electronic Library (IEL)</source><creator>Ling, Jiaxuan ; Deng, Wei ; Wei, Shiwei ; Liu, Siqin ; Wei, Shuliu ; He, Lihua</creator><creatorcontrib>Ling, Jiaxuan ; Deng, Wei ; Wei, Shiwei ; Liu, Siqin ; Wei, Shuliu ; He, Lihua</creatorcontrib><description>We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3397811</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Algorithms ; Computer simulation ; Convergence ; Current density ; Electric fields ; Electrical resistivity ; Fourier transforms ; Horizontal orientation ; Integral equations ; Integration ; Mathematical models ; Operators (mathematics) ; Shape ; Shape functions ; Wavelengths</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-e17c7255839c051cd2dacc6d09dfd066f2373cc71268bca989cf97075bc1861c3</cites><orcidid>0000-0001-6608-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ling, Jiaxuan</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Wei, Shiwei</creatorcontrib><creatorcontrib>Liu, Siqin</creatorcontrib><creatorcontrib>Wei, Shuliu</creatorcontrib><creatorcontrib>He, Lihua</creatorcontrib><title>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</title><title>IEEE transactions on geoscience and remote sensing</title><description>We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Current density</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Fourier transforms</subject><subject>Horizontal orientation</subject><subject>Integral equations</subject><subject>Integration</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Shape</subject><subject>Shape functions</subject><subject>Wavelengths</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFPAjEQhRujiYj-AG9NPC922m27PSogYjAaxHNTul0sWXeh7Zrw710Cp5dM3pt58yF0D2QEQNTjarb8GlFC8xFjShYAF2gAnBcZEXl-iQYElMhooeg1uolxSwjkHOQAva1-HH5vS1f7ZoPbCrNsgidjvHTRx-T_fDrgZxNdidsGz5vkNsHUeLrvTPL9pA98tsk1yZv6Fl1Vpo7u7qxD9P0yXY1fs8XHbD5-WmSWUp4yB9JK2ldjyhIOtqSlsVaURJVVSYSoKJPMWglUFGtrVKFspSSRfG2hEGDZED2c9u5Cu-9cTHrbdqHpT2pGeP-V5AJ6F5xcNrQxBlfpXfC_Jhw0EH1Epo_I9BGZPiNj_zzAXRk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ling, Jiaxuan</creator><creator>Deng, Wei</creator><creator>Wei, Shiwei</creator><creator>Liu, Siqin</creator><creator>Wei, Shuliu</creator><creator>He, Lihua</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6608-5332</orcidid></search><sort><creationdate>2024</creationdate><title>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</title><author>Ling, Jiaxuan ; Deng, Wei ; Wei, Shiwei ; Liu, Siqin ; Wei, Shuliu ; He, Lihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-e17c7255839c051cd2dacc6d09dfd066f2373cc71268bca989cf97075bc1861c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Current density</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Fourier transforms</topic><topic>Horizontal orientation</topic><topic>Integral equations</topic><topic>Integration</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Shape</topic><topic>Shape functions</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Jiaxuan</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Wei, Shiwei</creatorcontrib><creatorcontrib>Liu, Siqin</creatorcontrib><creatorcontrib>Wei, Shuliu</creatorcontrib><creatorcontrib>He, Lihua</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Jiaxuan</au><au>Deng, Wei</au><au>Wei, Shiwei</au><au>Liu, Siqin</au><au>Wei, Shuliu</au><au>He, Lihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2024.3397811</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6608-5332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-8
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3055177561
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Computer simulation
Convergence
Current density
Electric fields
Electrical resistivity
Fourier transforms
Horizontal orientation
Integral equations
Integration
Mathematical models
Operators (mathematics)
Shape
Shape functions
Wavelengths
title The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Modeling%20of%203-D%20DC%20Resistivity%20Based%20on%20Integral%20Equation%20of%20Potential&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ling,%20Jiaxuan&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2024.3397811&rft_dat=%3Cproquest_cross%3E3055177561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055177561&rft_id=info:pmid/&rfr_iscdi=true