The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential
We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-8 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Ling, Jiaxuan Deng, Wei Wei, Shiwei Liu, Siqin Wei, Shuliu He, Lihua |
description | We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly. |
doi_str_mv | 10.1109/TGRS.2024.3397811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055177561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055177561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-e17c7255839c051cd2dacc6d09dfd066f2373cc71268bca989cf97075bc1861c3</originalsourceid><addsrcrecordid>eNotkEFPAjEQhRujiYj-AG9NPC922m27PSogYjAaxHNTul0sWXeh7Zrw710Cp5dM3pt58yF0D2QEQNTjarb8GlFC8xFjShYAF2gAnBcZEXl-iQYElMhooeg1uolxSwjkHOQAva1-HH5vS1f7ZoPbCrNsgidjvHTRx-T_fDrgZxNdidsGz5vkNsHUeLrvTPL9pA98tsk1yZv6Fl1Vpo7u7qxD9P0yXY1fs8XHbD5-WmSWUp4yB9JK2ldjyhIOtqSlsVaURJVVSYSoKJPMWglUFGtrVKFspSSRfG2hEGDZED2c9u5Cu-9cTHrbdqHpT2pGeP-V5AJ6F5xcNrQxBlfpXfC_Jhw0EH1Epo_I9BGZPiNj_zzAXRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055177561</pqid></control><display><type>article</type><title>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</title><source>IEEE Electronic Library (IEL)</source><creator>Ling, Jiaxuan ; Deng, Wei ; Wei, Shiwei ; Liu, Siqin ; Wei, Shuliu ; He, Lihua</creator><creatorcontrib>Ling, Jiaxuan ; Deng, Wei ; Wei, Shiwei ; Liu, Siqin ; Wei, Shuliu ; He, Lihua</creatorcontrib><description>We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3397811</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Algorithms ; Computer simulation ; Convergence ; Current density ; Electric fields ; Electrical resistivity ; Fourier transforms ; Horizontal orientation ; Integral equations ; Integration ; Mathematical models ; Operators (mathematics) ; Shape ; Shape functions ; Wavelengths</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-e17c7255839c051cd2dacc6d09dfd066f2373cc71268bca989cf97075bc1861c3</cites><orcidid>0000-0001-6608-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ling, Jiaxuan</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Wei, Shiwei</creatorcontrib><creatorcontrib>Liu, Siqin</creatorcontrib><creatorcontrib>Wei, Shuliu</creatorcontrib><creatorcontrib>He, Lihua</creatorcontrib><title>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</title><title>IEEE transactions on geoscience and remote sensing</title><description>We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Current density</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Fourier transforms</subject><subject>Horizontal orientation</subject><subject>Integral equations</subject><subject>Integration</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Shape</subject><subject>Shape functions</subject><subject>Wavelengths</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFPAjEQhRujiYj-AG9NPC922m27PSogYjAaxHNTul0sWXeh7Zrw710Cp5dM3pt58yF0D2QEQNTjarb8GlFC8xFjShYAF2gAnBcZEXl-iQYElMhooeg1uolxSwjkHOQAva1-HH5vS1f7ZoPbCrNsgidjvHTRx-T_fDrgZxNdidsGz5vkNsHUeLrvTPL9pA98tsk1yZv6Fl1Vpo7u7qxD9P0yXY1fs8XHbD5-WmSWUp4yB9JK2ldjyhIOtqSlsVaURJVVSYSoKJPMWglUFGtrVKFspSSRfG2hEGDZED2c9u5Cu-9cTHrbdqHpT2pGeP-V5AJ6F5xcNrQxBlfpXfC_Jhw0EH1Epo_I9BGZPiNj_zzAXRk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ling, Jiaxuan</creator><creator>Deng, Wei</creator><creator>Wei, Shiwei</creator><creator>Liu, Siqin</creator><creator>Wei, Shuliu</creator><creator>He, Lihua</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6608-5332</orcidid></search><sort><creationdate>2024</creationdate><title>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</title><author>Ling, Jiaxuan ; Deng, Wei ; Wei, Shiwei ; Liu, Siqin ; Wei, Shuliu ; He, Lihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-e17c7255839c051cd2dacc6d09dfd066f2373cc71268bca989cf97075bc1861c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Current density</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Fourier transforms</topic><topic>Horizontal orientation</topic><topic>Integral equations</topic><topic>Integration</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Shape</topic><topic>Shape functions</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Jiaxuan</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Wei, Shiwei</creatorcontrib><creatorcontrib>Liu, Siqin</creatorcontrib><creatorcontrib>Wei, Shuliu</creatorcontrib><creatorcontrib>He, Lihua</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Jiaxuan</au><au>Deng, Wei</au><au>Wei, Shiwei</au><au>Liu, Siqin</au><au>Wei, Shuliu</au><au>He, Lihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>We perform a 2-D Fourier transform along the horizontal direction on the 3-D integration problem for the dc anomalous potential in the spatial domain, transforming it into a 1-D integration problem with independent solutions at different wavenumbers. The resulting 1-D integral equation in the wavenumber domain is expressed as a sum of element integrals. We then employ the shape function method using a quadratic shape function to characterize the scattering current density for each element and compute analytical expressions for the element integrals. Finally, we performed a 2-D inverse Fourier transform of the wavenumber-domain anomalous potential and electric field to obtain their values in the spatial domain, which are modified using iterative operators. This approach fully leverages the efficiency of the Fourier transform method and the high accuracy of the shape function integration method to achieve faster and more accurate solutions to the 3-D dc resistivity numerical simulation problem. Two examples demonstrate the accuracy and efficiency of our proposed algorithm. Numerical examples were used to analyze the relationship between the number of iterations and the anomaly conductivity difference during the convergence of the algorithm. It is shown that the algorithm converges faster for high-resistance anomalies and can be applied to simulate models with significantly different resistivities between the background medium and the anomaly.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2024.3397811</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6608-5332</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-8 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_3055177561 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Computer simulation Convergence Current density Electric fields Electrical resistivity Fourier transforms Horizontal orientation Integral equations Integration Mathematical models Operators (mathematics) Shape Shape functions Wavelengths |
title | The Modeling of 3-D DC Resistivity Based on Integral Equation of Potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Modeling%20of%203-D%20DC%20Resistivity%20Based%20on%20Integral%20Equation%20of%20Potential&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ling,%20Jiaxuan&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2024.3397811&rft_dat=%3Cproquest_cross%3E3055177561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055177561&rft_id=info:pmid/&rfr_iscdi=true |