A Casting Surface Dataset and Benchmark for Subtle and Confusable Defect Detection in Complex Contexts

Industrial anomaly detection (IAD) algorithms are essential for implementing automated quality inspection. Dataset diversity serves as the foundation for developing comprehensive detection algorithms. Existing IAD datasets focus on the diversity of objects and defects, overlooking the diversity of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-05, Vol.24 (10), p.16721-16733
Hauptverfasser: Wang, Qishan, Gao, Shuyong, Xiong, Li, Liang, Aili, Jiang, Kaidong, Zhang, Wenqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16733
container_issue 10
container_start_page 16721
container_title IEEE sensors journal
container_volume 24
creator Wang, Qishan
Gao, Shuyong
Xiong, Li
Liang, Aili
Jiang, Kaidong
Zhang, Wenqiang
description Industrial anomaly detection (IAD) algorithms are essential for implementing automated quality inspection. Dataset diversity serves as the foundation for developing comprehensive detection algorithms. Existing IAD datasets focus on the diversity of objects and defects, overlooking the diversity of domains within the real data. To bridge this gap, this study proposes the casting surface defect detection (CSDD) dataset, containing 12647 high-resolution gray images and pixel-precise ground truth (GT) labels for all defect samples. Compared to existing datasets, CSDD has the following two characteristics: 1) the target samples are unaligned and have complex and variable context information and 2) the defects in the CSDD dataset samples are subtle and confusable by factors such as oil contamination, processing features, and machining marks, illustrating the challenge of detecting real casting defects in an industrial context. Based on this dataset, we observe that current state-of-the-art (SOTA) IAD methods face challenges when there is considerable variation in sample context information. Furthermore, these methods encounter difficulties when abnormal samples are scarce, particularly those samples with subtle and confusable defects. To address this issue, we propose a novel method called realistic synthetic anomalies (RSAs), which enhances the model's capacity to construct a normal sample distribution by generating a large number of RSAs. Experimental results demonstrate that the model trained to classify synthetic anomalies from normal samples achieves the highest accuracy for CSDD and significantly improves detection accuracy for subtle and confusable defects. The CSDD dataset and code of RSA are available at https://github.com/18894269590/RSA .
doi_str_mv 10.1109/JSEN.2024.3387082
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3055168931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10502267</ieee_id><sourcerecordid>3055168931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1e7700d9cb3e11aed8890d2cfe730f4a91bc084cb9a74a7343b0a65af1bea0b3</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEEmPwAZA4VOLc4TRpkx5HN_5pgsN24FalqQMdWzuSVBrfnpTtwOnZej_b8iPkmsKEUsjvXpbz10kCCZ8wJgXI5ISMaJrKmAouT4eaQcyZeD8nF86tAWguUjEiZhoVyvmm_YiWvTVKYzRTXjn0kWrr6B5b_blV9isynQ1E5Tf4ZxRda3qnqtDO0KD2QXyQpmujpg32drfB_YB53Ht3Sc6M2ji8OuqYrB7mq-IpXrw9PhfTRawTnvmYohAAda4rhpQqrKXMoU60QcHAcJXTSoPkusqV4EowzipQWaoMrVBBxcbk9rB2Z7vvHp0v111v23CxZJCmNJM5o4GiB0rbzjmLptzZJjz5U1IohzTLIc1ySLM8phlmbg4zDSL-41NIkkywX7mQcVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055168931</pqid></control><display><type>article</type><title>A Casting Surface Dataset and Benchmark for Subtle and Confusable Defect Detection in Complex Contexts</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Qishan ; Gao, Shuyong ; Xiong, Li ; Liang, Aili ; Jiang, Kaidong ; Zhang, Wenqiang</creator><creatorcontrib>Wang, Qishan ; Gao, Shuyong ; Xiong, Li ; Liang, Aili ; Jiang, Kaidong ; Zhang, Wenqiang</creatorcontrib><description>Industrial anomaly detection (IAD) algorithms are essential for implementing automated quality inspection. Dataset diversity serves as the foundation for developing comprehensive detection algorithms. Existing IAD datasets focus on the diversity of objects and defects, overlooking the diversity of domains within the real data. To bridge this gap, this study proposes the casting surface defect detection (CSDD) dataset, containing 12647 high-resolution gray images and pixel-precise ground truth (GT) labels for all defect samples. Compared to existing datasets, CSDD has the following two characteristics: 1) the target samples are unaligned and have complex and variable context information and 2) the defects in the CSDD dataset samples are subtle and confusable by factors such as oil contamination, processing features, and machining marks, illustrating the challenge of detecting real casting defects in an industrial context. Based on this dataset, we observe that current state-of-the-art (SOTA) IAD methods face challenges when there is considerable variation in sample context information. Furthermore, these methods encounter difficulties when abnormal samples are scarce, particularly those samples with subtle and confusable defects. To address this issue, we propose a novel method called realistic synthetic anomalies (RSAs), which enhances the model's capacity to construct a normal sample distribution by generating a large number of RSAs. Experimental results demonstrate that the model trained to classify synthetic anomalies from normal samples achieves the highest accuracy for CSDD and significantly improves detection accuracy for subtle and confusable defects. The CSDD dataset and code of RSA are available at https://github.com/18894269590/RSA .</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3387082</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Casting ; Casting defects ; Context ; Datasets ; Defect detection ; Defects ; Feature extraction ; Image reconstruction ; Image resolution ; localization ; Machining ; realistic synthetic anomalies (RSAs) ; self-supervised learning ; Sensors ; Steel ; Surface defects</subject><ispartof>IEEE sensors journal, 2024-05, Vol.24 (10), p.16721-16733</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1e7700d9cb3e11aed8890d2cfe730f4a91bc084cb9a74a7343b0a65af1bea0b3</cites><orcidid>0000-0003-4615-8367 ; 0000-0003-3463-9040 ; 0000-0002-8992-0756 ; 0000-0002-3339-8751 ; 0009-0006-6527-3773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10502267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10502267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Qishan</creatorcontrib><creatorcontrib>Gao, Shuyong</creatorcontrib><creatorcontrib>Xiong, Li</creatorcontrib><creatorcontrib>Liang, Aili</creatorcontrib><creatorcontrib>Jiang, Kaidong</creatorcontrib><creatorcontrib>Zhang, Wenqiang</creatorcontrib><title>A Casting Surface Dataset and Benchmark for Subtle and Confusable Defect Detection in Complex Contexts</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Industrial anomaly detection (IAD) algorithms are essential for implementing automated quality inspection. Dataset diversity serves as the foundation for developing comprehensive detection algorithms. Existing IAD datasets focus on the diversity of objects and defects, overlooking the diversity of domains within the real data. To bridge this gap, this study proposes the casting surface defect detection (CSDD) dataset, containing 12647 high-resolution gray images and pixel-precise ground truth (GT) labels for all defect samples. Compared to existing datasets, CSDD has the following two characteristics: 1) the target samples are unaligned and have complex and variable context information and 2) the defects in the CSDD dataset samples are subtle and confusable by factors such as oil contamination, processing features, and machining marks, illustrating the challenge of detecting real casting defects in an industrial context. Based on this dataset, we observe that current state-of-the-art (SOTA) IAD methods face challenges when there is considerable variation in sample context information. Furthermore, these methods encounter difficulties when abnormal samples are scarce, particularly those samples with subtle and confusable defects. To address this issue, we propose a novel method called realistic synthetic anomalies (RSAs), which enhances the model's capacity to construct a normal sample distribution by generating a large number of RSAs. Experimental results demonstrate that the model trained to classify synthetic anomalies from normal samples achieves the highest accuracy for CSDD and significantly improves detection accuracy for subtle and confusable defects. The CSDD dataset and code of RSA are available at https://github.com/18894269590/RSA .</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Casting</subject><subject>Casting defects</subject><subject>Context</subject><subject>Datasets</subject><subject>Defect detection</subject><subject>Defects</subject><subject>Feature extraction</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>localization</subject><subject>Machining</subject><subject>realistic synthetic anomalies (RSAs)</subject><subject>self-supervised learning</subject><subject>Sensors</subject><subject>Steel</subject><subject>Surface defects</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwzAMxSMEEmPwAZA4VOLc4TRpkx5HN_5pgsN24FalqQMdWzuSVBrfnpTtwOnZej_b8iPkmsKEUsjvXpbz10kCCZ8wJgXI5ISMaJrKmAouT4eaQcyZeD8nF86tAWguUjEiZhoVyvmm_YiWvTVKYzRTXjn0kWrr6B5b_blV9isynQ1E5Tf4ZxRda3qnqtDO0KD2QXyQpmujpg32drfB_YB53Ht3Sc6M2ji8OuqYrB7mq-IpXrw9PhfTRawTnvmYohAAda4rhpQqrKXMoU60QcHAcJXTSoPkusqV4EowzipQWaoMrVBBxcbk9rB2Z7vvHp0v111v23CxZJCmNJM5o4GiB0rbzjmLptzZJjz5U1IohzTLIc1ySLM8phlmbg4zDSL-41NIkkywX7mQcVw</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Wang, Qishan</creator><creator>Gao, Shuyong</creator><creator>Xiong, Li</creator><creator>Liang, Aili</creator><creator>Jiang, Kaidong</creator><creator>Zhang, Wenqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4615-8367</orcidid><orcidid>https://orcid.org/0000-0003-3463-9040</orcidid><orcidid>https://orcid.org/0000-0002-8992-0756</orcidid><orcidid>https://orcid.org/0000-0002-3339-8751</orcidid><orcidid>https://orcid.org/0009-0006-6527-3773</orcidid></search><sort><creationdate>20240515</creationdate><title>A Casting Surface Dataset and Benchmark for Subtle and Confusable Defect Detection in Complex Contexts</title><author>Wang, Qishan ; Gao, Shuyong ; Xiong, Li ; Liang, Aili ; Jiang, Kaidong ; Zhang, Wenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1e7700d9cb3e11aed8890d2cfe730f4a91bc084cb9a74a7343b0a65af1bea0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Casting</topic><topic>Casting defects</topic><topic>Context</topic><topic>Datasets</topic><topic>Defect detection</topic><topic>Defects</topic><topic>Feature extraction</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>localization</topic><topic>Machining</topic><topic>realistic synthetic anomalies (RSAs)</topic><topic>self-supervised learning</topic><topic>Sensors</topic><topic>Steel</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qishan</creatorcontrib><creatorcontrib>Gao, Shuyong</creatorcontrib><creatorcontrib>Xiong, Li</creatorcontrib><creatorcontrib>Liang, Aili</creatorcontrib><creatorcontrib>Jiang, Kaidong</creatorcontrib><creatorcontrib>Zhang, Wenqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Qishan</au><au>Gao, Shuyong</au><au>Xiong, Li</au><au>Liang, Aili</au><au>Jiang, Kaidong</au><au>Zhang, Wenqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Casting Surface Dataset and Benchmark for Subtle and Confusable Defect Detection in Complex Contexts</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-05-15</date><risdate>2024</risdate><volume>24</volume><issue>10</issue><spage>16721</spage><epage>16733</epage><pages>16721-16733</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Industrial anomaly detection (IAD) algorithms are essential for implementing automated quality inspection. Dataset diversity serves as the foundation for developing comprehensive detection algorithms. Existing IAD datasets focus on the diversity of objects and defects, overlooking the diversity of domains within the real data. To bridge this gap, this study proposes the casting surface defect detection (CSDD) dataset, containing 12647 high-resolution gray images and pixel-precise ground truth (GT) labels for all defect samples. Compared to existing datasets, CSDD has the following two characteristics: 1) the target samples are unaligned and have complex and variable context information and 2) the defects in the CSDD dataset samples are subtle and confusable by factors such as oil contamination, processing features, and machining marks, illustrating the challenge of detecting real casting defects in an industrial context. Based on this dataset, we observe that current state-of-the-art (SOTA) IAD methods face challenges when there is considerable variation in sample context information. Furthermore, these methods encounter difficulties when abnormal samples are scarce, particularly those samples with subtle and confusable defects. To address this issue, we propose a novel method called realistic synthetic anomalies (RSAs), which enhances the model's capacity to construct a normal sample distribution by generating a large number of RSAs. Experimental results demonstrate that the model trained to classify synthetic anomalies from normal samples achieves the highest accuracy for CSDD and significantly improves detection accuracy for subtle and confusable defects. The CSDD dataset and code of RSA are available at https://github.com/18894269590/RSA .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3387082</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4615-8367</orcidid><orcidid>https://orcid.org/0000-0003-3463-9040</orcidid><orcidid>https://orcid.org/0000-0002-8992-0756</orcidid><orcidid>https://orcid.org/0000-0002-3339-8751</orcidid><orcidid>https://orcid.org/0009-0006-6527-3773</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-05, Vol.24 (10), p.16721-16733
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3055168931
source IEEE Electronic Library (IEL)
subjects Algorithms
Anomalies
Anomaly detection
Casting
Casting defects
Context
Datasets
Defect detection
Defects
Feature extraction
Image reconstruction
Image resolution
localization
Machining
realistic synthetic anomalies (RSAs)
self-supervised learning
Sensors
Steel
Surface defects
title A Casting Surface Dataset and Benchmark for Subtle and Confusable Defect Detection in Complex Contexts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Casting%20Surface%20Dataset%20and%20Benchmark%20for%20Subtle%20and%20Confusable%20Defect%20Detection%20in%20Complex%20Contexts&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Qishan&rft.date=2024-05-15&rft.volume=24&rft.issue=10&rft.spage=16721&rft.epage=16733&rft.pages=16721-16733&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3387082&rft_dat=%3Cproquest_RIE%3E3055168931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055168931&rft_id=info:pmid/&rft_ieee_id=10502267&rfr_iscdi=true