A Highly Selective MEMS-Based Gas Sensor With Gelatin-Carbon Black Composite Film Fabricated by the Thin-Film-Needle-Coating Method
In this article, a novel thin-film-needle-coating (TFNC) method is proposed to fabricate a high-sensitivity and strong identification humidity sensor based on the newly developed carbon black-gelatin composite (CB-GE) film. This study aims to fabricate a highly sensitive, stable, and accurate multit...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-05, Vol.24 (10), p.15827-15835 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15835 |
---|---|
container_issue | 10 |
container_start_page | 15827 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Xiao, Hongyang Zhao, Zhujie Quan, Siyuan Huang, Chun Xia, Cao Xia, Yuanlin He, Liang Wang, Zhuqing |
description | In this article, a novel thin-film-needle-coating (TFNC) method is proposed to fabricate a high-sensitivity and strong identification humidity sensor based on the newly developed carbon black-gelatin composite (CB-GE) film. This study aims to fabricate a highly sensitive, stable, and accurate multitask gas sensor for gas detection. The gas sensor comprises the super-thin CB-GE film and patterned sophisticated electrodes. The microelectromechanical system (MEMS) fabricating method and the TFNC coating method promise the successful fabrication of electrodes and sensitive CB-GE composite film. This CB-GE sensor is tested and verified to have special characteristics like high sensitivity, stable repeatability, and rapid recovery toward the changes in different humidity rates and different concentrations of ethanol and acetone gas. Herein, the CB-GE composite film sensor exhibits a fast response time (7 s) on exposure to water vapor ranging from 10.9% to 83.2% rate humidity. Moreover, it also exhibits a quick response time (20 s) on exposure to ethanol from 39.861 to 441.135 ppm and has good repeatability on exposure to acetone. Depending on specific signal features, the CB-GE sensor demonstrates superior gas selectivity among water vapor, ethanol, and acetone. In the future, this low-cost TFNC-coating method can fabricate CB-GE film sensors via a sophisticated MEMS technique leading to deep potentials in the field of electronic nose. |
doi_str_mv | 10.1109/JSEN.2024.3386898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3055168743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10502300</ieee_id><sourcerecordid>3055168743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-34788917355fe8ab70751435ff89ec7eb68aad726f20d80cbb8267faae28e11d3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhiMEEqXwA5AYLDG72HEcO2Mb9QPUlqFFsEVOcmlc0rrYLlJn_jiJysB0J937vCc9QXBPyYBSkjy9rMbLQUjCaMCYjGUiL4Ie5VxiKiJ52e2M4IiJj-vgxrktITQRXPSCnyGa6U3dnNAKGii8_ga0GC9WeKQclGiqXHvYO2PRu_Y1mkKjvN7jVNnc7NGoUcUnSs3uYJz2gCa62aGJyq0ulG_x_IR8DWhdt0h3w0uAsgGcmq5lgxbga1PeBleVahzc_c1-8DYZr9MZnr9On9PhHBdhFHvMIiFlQgXjvAKpckEEpxHjVSUTKATksVSqFGFchaSUpMhzGcaiUgpCCZSWrB88nnsP1nwdwflsa452377MGOGcxlJErE3Rc6qwxjkLVXaweqfsKaMk61xnneusc539uW6ZhzOjAeBfnpOQEcJ-Ac-jek4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055168743</pqid></control><display><type>article</type><title>A Highly Selective MEMS-Based Gas Sensor With Gelatin-Carbon Black Composite Film Fabricated by the Thin-Film-Needle-Coating Method</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Hongyang ; Zhao, Zhujie ; Quan, Siyuan ; Huang, Chun ; Xia, Cao ; Xia, Yuanlin ; He, Liang ; Wang, Zhuqing</creator><creatorcontrib>Xiao, Hongyang ; Zhao, Zhujie ; Quan, Siyuan ; Huang, Chun ; Xia, Cao ; Xia, Yuanlin ; He, Liang ; Wang, Zhuqing</creatorcontrib><description>In this article, a novel thin-film-needle-coating (TFNC) method is proposed to fabricate a high-sensitivity and strong identification humidity sensor based on the newly developed carbon black-gelatin composite (CB-GE) film. This study aims to fabricate a highly sensitive, stable, and accurate multitask gas sensor for gas detection. The gas sensor comprises the super-thin CB-GE film and patterned sophisticated electrodes. The microelectromechanical system (MEMS) fabricating method and the TFNC coating method promise the successful fabrication of electrodes and sensitive CB-GE composite film. This CB-GE sensor is tested and verified to have special characteristics like high sensitivity, stable repeatability, and rapid recovery toward the changes in different humidity rates and different concentrations of ethanol and acetone gas. Herein, the CB-GE composite film sensor exhibits a fast response time (7 s) on exposure to water vapor ranging from 10.9% to 83.2% rate humidity. Moreover, it also exhibits a quick response time (20 s) on exposure to ethanol from 39.861 to 441.135 ppm and has good repeatability on exposure to acetone. Depending on specific signal features, the CB-GE sensor demonstrates superior gas selectivity among water vapor, ethanol, and acetone. In the future, this low-cost TFNC-coating method can fabricate CB-GE film sensors via a sophisticated MEMS technique leading to deep potentials in the field of electronic nose.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3386898</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acetone ; Carbon black ; Carbon black(CB) ; Coating ; Coatings ; composite film ; Electrodes ; Electronic noses ; Ethanol ; Exposure ; Fabrication ; Gas detectors ; gas sensor ; Gas sensors ; Gelatin ; Humidity ; humidity sensor ; microelectromechanical system (MEMS) ; Microelectromechanical systems ; Reproducibility ; Response time ; Sensitivity ; Sensors ; Substrates ; Thin films ; Water vapor</subject><ispartof>IEEE sensors journal, 2024-05, Vol.24 (10), p.15827-15835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-34788917355fe8ab70751435ff89ec7eb68aad726f20d80cbb8267faae28e11d3</cites><orcidid>0000-0002-7402-9194 ; 0000-0003-2819-7709 ; 0000-0001-5799-0648 ; 0000-0002-7513-5773 ; 0000-0001-5105-762X ; 0000-0002-4667-5682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10502300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10502300$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Hongyang</creatorcontrib><creatorcontrib>Zhao, Zhujie</creatorcontrib><creatorcontrib>Quan, Siyuan</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Xia, Cao</creatorcontrib><creatorcontrib>Xia, Yuanlin</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Wang, Zhuqing</creatorcontrib><title>A Highly Selective MEMS-Based Gas Sensor With Gelatin-Carbon Black Composite Film Fabricated by the Thin-Film-Needle-Coating Method</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this article, a novel thin-film-needle-coating (TFNC) method is proposed to fabricate a high-sensitivity and strong identification humidity sensor based on the newly developed carbon black-gelatin composite (CB-GE) film. This study aims to fabricate a highly sensitive, stable, and accurate multitask gas sensor for gas detection. The gas sensor comprises the super-thin CB-GE film and patterned sophisticated electrodes. The microelectromechanical system (MEMS) fabricating method and the TFNC coating method promise the successful fabrication of electrodes and sensitive CB-GE composite film. This CB-GE sensor is tested and verified to have special characteristics like high sensitivity, stable repeatability, and rapid recovery toward the changes in different humidity rates and different concentrations of ethanol and acetone gas. Herein, the CB-GE composite film sensor exhibits a fast response time (7 s) on exposure to water vapor ranging from 10.9% to 83.2% rate humidity. Moreover, it also exhibits a quick response time (20 s) on exposure to ethanol from 39.861 to 441.135 ppm and has good repeatability on exposure to acetone. Depending on specific signal features, the CB-GE sensor demonstrates superior gas selectivity among water vapor, ethanol, and acetone. In the future, this low-cost TFNC-coating method can fabricate CB-GE film sensors via a sophisticated MEMS technique leading to deep potentials in the field of electronic nose.</description><subject>Acetone</subject><subject>Carbon black</subject><subject>Carbon black(CB)</subject><subject>Coating</subject><subject>Coatings</subject><subject>composite film</subject><subject>Electrodes</subject><subject>Electronic noses</subject><subject>Ethanol</subject><subject>Exposure</subject><subject>Fabrication</subject><subject>Gas detectors</subject><subject>gas sensor</subject><subject>Gas sensors</subject><subject>Gelatin</subject><subject>Humidity</subject><subject>humidity sensor</subject><subject>microelectromechanical system (MEMS)</subject><subject>Microelectromechanical systems</subject><subject>Reproducibility</subject><subject>Response time</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Water vapor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhiMEEqXwA5AYLDG72HEcO2Mb9QPUlqFFsEVOcmlc0rrYLlJn_jiJysB0J937vCc9QXBPyYBSkjy9rMbLQUjCaMCYjGUiL4Ie5VxiKiJ52e2M4IiJj-vgxrktITQRXPSCnyGa6U3dnNAKGii8_ga0GC9WeKQclGiqXHvYO2PRu_Y1mkKjvN7jVNnc7NGoUcUnSs3uYJz2gCa62aGJyq0ulG_x_IR8DWhdt0h3w0uAsgGcmq5lgxbga1PeBleVahzc_c1-8DYZr9MZnr9On9PhHBdhFHvMIiFlQgXjvAKpckEEpxHjVSUTKATksVSqFGFchaSUpMhzGcaiUgpCCZSWrB88nnsP1nwdwflsa452377MGOGcxlJErE3Rc6qwxjkLVXaweqfsKaMk61xnneusc539uW6ZhzOjAeBfnpOQEcJ-Ac-jek4</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Xiao, Hongyang</creator><creator>Zhao, Zhujie</creator><creator>Quan, Siyuan</creator><creator>Huang, Chun</creator><creator>Xia, Cao</creator><creator>Xia, Yuanlin</creator><creator>He, Liang</creator><creator>Wang, Zhuqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7402-9194</orcidid><orcidid>https://orcid.org/0000-0003-2819-7709</orcidid><orcidid>https://orcid.org/0000-0001-5799-0648</orcidid><orcidid>https://orcid.org/0000-0002-7513-5773</orcidid><orcidid>https://orcid.org/0000-0001-5105-762X</orcidid><orcidid>https://orcid.org/0000-0002-4667-5682</orcidid></search><sort><creationdate>20240515</creationdate><title>A Highly Selective MEMS-Based Gas Sensor With Gelatin-Carbon Black Composite Film Fabricated by the Thin-Film-Needle-Coating Method</title><author>Xiao, Hongyang ; Zhao, Zhujie ; Quan, Siyuan ; Huang, Chun ; Xia, Cao ; Xia, Yuanlin ; He, Liang ; Wang, Zhuqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-34788917355fe8ab70751435ff89ec7eb68aad726f20d80cbb8267faae28e11d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetone</topic><topic>Carbon black</topic><topic>Carbon black(CB)</topic><topic>Coating</topic><topic>Coatings</topic><topic>composite film</topic><topic>Electrodes</topic><topic>Electronic noses</topic><topic>Ethanol</topic><topic>Exposure</topic><topic>Fabrication</topic><topic>Gas detectors</topic><topic>gas sensor</topic><topic>Gas sensors</topic><topic>Gelatin</topic><topic>Humidity</topic><topic>humidity sensor</topic><topic>microelectromechanical system (MEMS)</topic><topic>Microelectromechanical systems</topic><topic>Reproducibility</topic><topic>Response time</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hongyang</creatorcontrib><creatorcontrib>Zhao, Zhujie</creatorcontrib><creatorcontrib>Quan, Siyuan</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Xia, Cao</creatorcontrib><creatorcontrib>Xia, Yuanlin</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Wang, Zhuqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Hongyang</au><au>Zhao, Zhujie</au><au>Quan, Siyuan</au><au>Huang, Chun</au><au>Xia, Cao</au><au>Xia, Yuanlin</au><au>He, Liang</au><au>Wang, Zhuqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Selective MEMS-Based Gas Sensor With Gelatin-Carbon Black Composite Film Fabricated by the Thin-Film-Needle-Coating Method</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-05-15</date><risdate>2024</risdate><volume>24</volume><issue>10</issue><spage>15827</spage><epage>15835</epage><pages>15827-15835</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this article, a novel thin-film-needle-coating (TFNC) method is proposed to fabricate a high-sensitivity and strong identification humidity sensor based on the newly developed carbon black-gelatin composite (CB-GE) film. This study aims to fabricate a highly sensitive, stable, and accurate multitask gas sensor for gas detection. The gas sensor comprises the super-thin CB-GE film and patterned sophisticated electrodes. The microelectromechanical system (MEMS) fabricating method and the TFNC coating method promise the successful fabrication of electrodes and sensitive CB-GE composite film. This CB-GE sensor is tested and verified to have special characteristics like high sensitivity, stable repeatability, and rapid recovery toward the changes in different humidity rates and different concentrations of ethanol and acetone gas. Herein, the CB-GE composite film sensor exhibits a fast response time (7 s) on exposure to water vapor ranging from 10.9% to 83.2% rate humidity. Moreover, it also exhibits a quick response time (20 s) on exposure to ethanol from 39.861 to 441.135 ppm and has good repeatability on exposure to acetone. Depending on specific signal features, the CB-GE sensor demonstrates superior gas selectivity among water vapor, ethanol, and acetone. In the future, this low-cost TFNC-coating method can fabricate CB-GE film sensors via a sophisticated MEMS technique leading to deep potentials in the field of electronic nose.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3386898</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7402-9194</orcidid><orcidid>https://orcid.org/0000-0003-2819-7709</orcidid><orcidid>https://orcid.org/0000-0001-5799-0648</orcidid><orcidid>https://orcid.org/0000-0002-7513-5773</orcidid><orcidid>https://orcid.org/0000-0001-5105-762X</orcidid><orcidid>https://orcid.org/0000-0002-4667-5682</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-05, Vol.24 (10), p.15827-15835 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3055168743 |
source | IEEE Electronic Library (IEL) |
subjects | Acetone Carbon black Carbon black(CB) Coating Coatings composite film Electrodes Electronic noses Ethanol Exposure Fabrication Gas detectors gas sensor Gas sensors Gelatin Humidity humidity sensor microelectromechanical system (MEMS) Microelectromechanical systems Reproducibility Response time Sensitivity Sensors Substrates Thin films Water vapor |
title | A Highly Selective MEMS-Based Gas Sensor With Gelatin-Carbon Black Composite Film Fabricated by the Thin-Film-Needle-Coating Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Selective%20MEMS-Based%20Gas%20Sensor%20With%20Gelatin-Carbon%20Black%20Composite%20Film%20Fabricated%20by%20the%20Thin-Film-Needle-Coating%20Method&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xiao,%20Hongyang&rft.date=2024-05-15&rft.volume=24&rft.issue=10&rft.spage=15827&rft.epage=15835&rft.pages=15827-15835&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3386898&rft_dat=%3Cproquest_RIE%3E3055168743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055168743&rft_id=info:pmid/&rft_ieee_id=10502300&rfr_iscdi=true |