Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces

We study an optimal transport problem with a backward martingale constraint in a pseudo-Euclidean space S. We show that the dual problem consists in the minimization of the expected values of the Fitzpatrick functions associated with maximal S-monotone sets. An optimal plan γ and an optimal maximal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2024-02, Vol.34 (1B), p.1571
Hauptverfasser: Kramkov, Dmitry, Sîrbu, Mihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study an optimal transport problem with a backward martingale constraint in a pseudo-Euclidean space S. We show that the dual problem consists in the minimization of the expected values of the Fitzpatrick functions associated with maximal S-monotone sets. An optimal plan γ and an optimal maximal S-monotone set G are characterized by the condition that the support of γ is contained in the graph of the S-projection on G. For a Gaussian random variable Y, we get a unique decomposition: Y = X + Z , where X and Z are independent Gaussian random variables taking values, respectively, in complementary positive and negative linear subspaces of the S-space.
ISSN:1050-5164
2168-8737
DOI:10.1214/23-AAP1998