Quantum error mitigation

For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews of modern physics 2023-10, Vol.95 (4), p.1, Article 045005
Hauptverfasser: Cai, Zhenyu, Babbush, Ryan, Benjamin, Simon C., Endo, Suguru, Huggins, William J., Li, Ying, McClean, Jarrod R., O’Brien, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1
container_title Reviews of modern physics
container_volume 95
creator Cai, Zhenyu
Babbush, Ryan
Benjamin, Simon C.
Endo, Suguru
Huggins, William J.
Li, Ying
McClean, Jarrod R.
O’Brien, Thomas E.
description For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.
doi_str_mv 10.1103/RevModPhys.95.045005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055131738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055131738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</originalsourceid><addsrcrecordid>eNpFkM1LxDAUxIMoWFfvHjwseG59r69pmqMsugorfqDnkKaJdrHNmrTC_vdWKngaBoaZ4cfYBUKGCHT1Yr8ffPP0sY-Z5BkUHIAfsAQ5yRQELw9ZAkBFWlYlHrOTGLcweeAiYefPo-6HsVvaEHxYdu3Qvuuh9f0pO3L6M9qzP12wt9ub19Vdunlc36-uN6khgiEVVtYNCFNZjSbHaa22Fq0TNTYWwMgSKTda501eVehM5WonDeUEEmWjBS3Y5dy7C_5rtHFQWz-GfppU00OOhIKqKVXMKRN8jME6tQttp8NeIahfBuqfgZJczQzoB28UURE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055131738</pqid></control><display><type>article</type><title>Quantum error mitigation</title><source>American Physical Society Journals</source><creator>Cai, Zhenyu ; Babbush, Ryan ; Benjamin, Simon C. ; Endo, Suguru ; Huggins, William J. ; Li, Ying ; McClean, Jarrod R. ; O’Brien, Thomas E.</creator><creatorcontrib>Cai, Zhenyu ; Babbush, Ryan ; Benjamin, Simon C. ; Endo, Suguru ; Huggins, William J. ; Li, Ying ; McClean, Jarrod R. ; O’Brien, Thomas E.</creatorcontrib><description>For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.95.045005</identifier><language>eng</language><publisher>College Park: American Institute of Physics</publisher><subject>Errors ; Fault tolerance ; Quantum computers</subject><ispartof>Reviews of modern physics, 2023-10, Vol.95 (4), p.1, Article 045005</ispartof><rights>Copyright American Institute of Physics Oct-Dec 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</citedby><cites>FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</cites><orcidid>0000-0002-1705-2494 ; 0000-0002-2809-0509 ; 0000-0002-2317-3751 ; 0000-0003-2735-1380 ; 0000-0002-8406-6626 ; 0000-0002-7766-5348 ; 0000-0001-6979-9533 ; 0000-0001-5659-4301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids></links><search><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Babbush, Ryan</creatorcontrib><creatorcontrib>Benjamin, Simon C.</creatorcontrib><creatorcontrib>Endo, Suguru</creatorcontrib><creatorcontrib>Huggins, William J.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>McClean, Jarrod R.</creatorcontrib><creatorcontrib>O’Brien, Thomas E.</creatorcontrib><title>Quantum error mitigation</title><title>Reviews of modern physics</title><description>For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.</description><subject>Errors</subject><subject>Fault tolerance</subject><subject>Quantum computers</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAUxIMoWFfvHjwseG59r69pmqMsugorfqDnkKaJdrHNmrTC_vdWKngaBoaZ4cfYBUKGCHT1Yr8ffPP0sY-Z5BkUHIAfsAQ5yRQELw9ZAkBFWlYlHrOTGLcweeAiYefPo-6HsVvaEHxYdu3Qvuuh9f0pO3L6M9qzP12wt9ub19Vdunlc36-uN6khgiEVVtYNCFNZjSbHaa22Fq0TNTYWwMgSKTda501eVehM5WonDeUEEmWjBS3Y5dy7C_5rtHFQWz-GfppU00OOhIKqKVXMKRN8jME6tQttp8NeIahfBuqfgZJczQzoB28UURE</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cai, Zhenyu</creator><creator>Babbush, Ryan</creator><creator>Benjamin, Simon C.</creator><creator>Endo, Suguru</creator><creator>Huggins, William J.</creator><creator>Li, Ying</creator><creator>McClean, Jarrod R.</creator><creator>O’Brien, Thomas E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1705-2494</orcidid><orcidid>https://orcid.org/0000-0002-2809-0509</orcidid><orcidid>https://orcid.org/0000-0002-2317-3751</orcidid><orcidid>https://orcid.org/0000-0003-2735-1380</orcidid><orcidid>https://orcid.org/0000-0002-8406-6626</orcidid><orcidid>https://orcid.org/0000-0002-7766-5348</orcidid><orcidid>https://orcid.org/0000-0001-6979-9533</orcidid><orcidid>https://orcid.org/0000-0001-5659-4301</orcidid></search><sort><creationdate>20231001</creationdate><title>Quantum error mitigation</title><author>Cai, Zhenyu ; Babbush, Ryan ; Benjamin, Simon C. ; Endo, Suguru ; Huggins, William J. ; Li, Ying ; McClean, Jarrod R. ; O’Brien, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Errors</topic><topic>Fault tolerance</topic><topic>Quantum computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Babbush, Ryan</creatorcontrib><creatorcontrib>Benjamin, Simon C.</creatorcontrib><creatorcontrib>Endo, Suguru</creatorcontrib><creatorcontrib>Huggins, William J.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>McClean, Jarrod R.</creatorcontrib><creatorcontrib>O’Brien, Thomas E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhenyu</au><au>Babbush, Ryan</au><au>Benjamin, Simon C.</au><au>Endo, Suguru</au><au>Huggins, William J.</au><au>Li, Ying</au><au>McClean, Jarrod R.</au><au>O’Brien, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum error mitigation</atitle><jtitle>Reviews of modern physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>95</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>045005</artnum><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.</abstract><cop>College Park</cop><pub>American Institute of Physics</pub><doi>10.1103/RevModPhys.95.045005</doi><orcidid>https://orcid.org/0000-0002-1705-2494</orcidid><orcidid>https://orcid.org/0000-0002-2809-0509</orcidid><orcidid>https://orcid.org/0000-0002-2317-3751</orcidid><orcidid>https://orcid.org/0000-0003-2735-1380</orcidid><orcidid>https://orcid.org/0000-0002-8406-6626</orcidid><orcidid>https://orcid.org/0000-0002-7766-5348</orcidid><orcidid>https://orcid.org/0000-0001-6979-9533</orcidid><orcidid>https://orcid.org/0000-0001-5659-4301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6861
ispartof Reviews of modern physics, 2023-10, Vol.95 (4), p.1, Article 045005
issn 0034-6861
1539-0756
language eng
recordid cdi_proquest_journals_3055131738
source American Physical Society Journals
subjects Errors
Fault tolerance
Quantum computers
title Quantum error mitigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20error%20mitigation&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Cai,%20Zhenyu&rft.date=2023-10-01&rft.volume=95&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=045005&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.95.045005&rft_dat=%3Cproquest_cross%3E3055131738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055131738&rft_id=info:pmid/&rfr_iscdi=true