Quantum error mitigation
For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in t...
Gespeichert in:
Veröffentlicht in: | Reviews of modern physics 2023-10, Vol.95 (4), p.1, Article 045005 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Reviews of modern physics |
container_volume | 95 |
creator | Cai, Zhenyu Babbush, Ryan Benjamin, Simon C. Endo, Suguru Huggins, William J. Li, Ying McClean, Jarrod R. O’Brien, Thomas E. |
description | For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed. |
doi_str_mv | 10.1103/RevModPhys.95.045005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055131738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055131738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</originalsourceid><addsrcrecordid>eNpFkM1LxDAUxIMoWFfvHjwseG59r69pmqMsugorfqDnkKaJdrHNmrTC_vdWKngaBoaZ4cfYBUKGCHT1Yr8ffPP0sY-Z5BkUHIAfsAQ5yRQELw9ZAkBFWlYlHrOTGLcweeAiYefPo-6HsVvaEHxYdu3Qvuuh9f0pO3L6M9qzP12wt9ub19Vdunlc36-uN6khgiEVVtYNCFNZjSbHaa22Fq0TNTYWwMgSKTda501eVehM5WonDeUEEmWjBS3Y5dy7C_5rtHFQWz-GfppU00OOhIKqKVXMKRN8jME6tQttp8NeIahfBuqfgZJczQzoB28UURE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055131738</pqid></control><display><type>article</type><title>Quantum error mitigation</title><source>American Physical Society Journals</source><creator>Cai, Zhenyu ; Babbush, Ryan ; Benjamin, Simon C. ; Endo, Suguru ; Huggins, William J. ; Li, Ying ; McClean, Jarrod R. ; O’Brien, Thomas E.</creator><creatorcontrib>Cai, Zhenyu ; Babbush, Ryan ; Benjamin, Simon C. ; Endo, Suguru ; Huggins, William J. ; Li, Ying ; McClean, Jarrod R. ; O’Brien, Thomas E.</creatorcontrib><description>For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.95.045005</identifier><language>eng</language><publisher>College Park: American Institute of Physics</publisher><subject>Errors ; Fault tolerance ; Quantum computers</subject><ispartof>Reviews of modern physics, 2023-10, Vol.95 (4), p.1, Article 045005</ispartof><rights>Copyright American Institute of Physics Oct-Dec 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</citedby><cites>FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</cites><orcidid>0000-0002-1705-2494 ; 0000-0002-2809-0509 ; 0000-0002-2317-3751 ; 0000-0003-2735-1380 ; 0000-0002-8406-6626 ; 0000-0002-7766-5348 ; 0000-0001-6979-9533 ; 0000-0001-5659-4301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids></links><search><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Babbush, Ryan</creatorcontrib><creatorcontrib>Benjamin, Simon C.</creatorcontrib><creatorcontrib>Endo, Suguru</creatorcontrib><creatorcontrib>Huggins, William J.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>McClean, Jarrod R.</creatorcontrib><creatorcontrib>O’Brien, Thomas E.</creatorcontrib><title>Quantum error mitigation</title><title>Reviews of modern physics</title><description>For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.</description><subject>Errors</subject><subject>Fault tolerance</subject><subject>Quantum computers</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAUxIMoWFfvHjwseG59r69pmqMsugorfqDnkKaJdrHNmrTC_vdWKngaBoaZ4cfYBUKGCHT1Yr8ffPP0sY-Z5BkUHIAfsAQ5yRQELw9ZAkBFWlYlHrOTGLcweeAiYefPo-6HsVvaEHxYdu3Qvuuh9f0pO3L6M9qzP12wt9ub19Vdunlc36-uN6khgiEVVtYNCFNZjSbHaa22Fq0TNTYWwMgSKTda501eVehM5WonDeUEEmWjBS3Y5dy7C_5rtHFQWz-GfppU00OOhIKqKVXMKRN8jME6tQttp8NeIahfBuqfgZJczQzoB28UURE</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cai, Zhenyu</creator><creator>Babbush, Ryan</creator><creator>Benjamin, Simon C.</creator><creator>Endo, Suguru</creator><creator>Huggins, William J.</creator><creator>Li, Ying</creator><creator>McClean, Jarrod R.</creator><creator>O’Brien, Thomas E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1705-2494</orcidid><orcidid>https://orcid.org/0000-0002-2809-0509</orcidid><orcidid>https://orcid.org/0000-0002-2317-3751</orcidid><orcidid>https://orcid.org/0000-0003-2735-1380</orcidid><orcidid>https://orcid.org/0000-0002-8406-6626</orcidid><orcidid>https://orcid.org/0000-0002-7766-5348</orcidid><orcidid>https://orcid.org/0000-0001-6979-9533</orcidid><orcidid>https://orcid.org/0000-0001-5659-4301</orcidid></search><sort><creationdate>20231001</creationdate><title>Quantum error mitigation</title><author>Cai, Zhenyu ; Babbush, Ryan ; Benjamin, Simon C. ; Endo, Suguru ; Huggins, William J. ; Li, Ying ; McClean, Jarrod R. ; O’Brien, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7e9bd07c8ea1c21075bee1ef7b1de00c96132caa2d2881fc8fbf9c3230919da73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Errors</topic><topic>Fault tolerance</topic><topic>Quantum computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Babbush, Ryan</creatorcontrib><creatorcontrib>Benjamin, Simon C.</creatorcontrib><creatorcontrib>Endo, Suguru</creatorcontrib><creatorcontrib>Huggins, William J.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>McClean, Jarrod R.</creatorcontrib><creatorcontrib>O’Brien, Thomas E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhenyu</au><au>Babbush, Ryan</au><au>Benjamin, Simon C.</au><au>Endo, Suguru</au><au>Huggins, William J.</au><au>Li, Ying</au><au>McClean, Jarrod R.</au><au>O’Brien, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum error mitigation</atitle><jtitle>Reviews of modern physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>95</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>045005</artnum><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.</abstract><cop>College Park</cop><pub>American Institute of Physics</pub><doi>10.1103/RevModPhys.95.045005</doi><orcidid>https://orcid.org/0000-0002-1705-2494</orcidid><orcidid>https://orcid.org/0000-0002-2809-0509</orcidid><orcidid>https://orcid.org/0000-0002-2317-3751</orcidid><orcidid>https://orcid.org/0000-0003-2735-1380</orcidid><orcidid>https://orcid.org/0000-0002-8406-6626</orcidid><orcidid>https://orcid.org/0000-0002-7766-5348</orcidid><orcidid>https://orcid.org/0000-0001-6979-9533</orcidid><orcidid>https://orcid.org/0000-0001-5659-4301</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6861 |
ispartof | Reviews of modern physics, 2023-10, Vol.95 (4), p.1, Article 045005 |
issn | 0034-6861 1539-0756 |
language | eng |
recordid | cdi_proquest_journals_3055131738 |
source | American Physical Society Journals |
subjects | Errors Fault tolerance Quantum computers |
title | Quantum error mitigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20error%20mitigation&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Cai,%20Zhenyu&rft.date=2023-10-01&rft.volume=95&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=045005&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.95.045005&rft_dat=%3Cproquest_cross%3E3055131738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055131738&rft_id=info:pmid/&rfr_iscdi=true |