A Kinetic Model of CO2 Absorption in Molten CaO-CaF2-CaCl2

Post-combustion CO2 capture is a promising method for removing CO2 from processes where emissions cannot be mitigated by renewable energy input and where the chemical reactions required for production emit CO2, e.g. calcination of calcium carbonate (CaCO3) for cement production. One promising captur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2024/04/01, Vol.92(4), pp.043014-043014
Hauptverfasser: IVELAND, Sondre G., WESTBYE, Alexander, MARCHETTI, Jorge M., OLSEN, Espen, NYGÅRD, Heidi S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043014
container_issue 4
container_start_page 043014
container_title Denki kagaku oyobi kōgyō butsuri kagaku
container_volume 92
creator IVELAND, Sondre G.
WESTBYE, Alexander
MARCHETTI, Jorge M.
OLSEN, Espen
NYGÅRD, Heidi S.
description Post-combustion CO2 capture is a promising method for removing CO2 from processes where emissions cannot be mitigated by renewable energy input and where the chemical reactions required for production emit CO2, e.g. calcination of calcium carbonate (CaCO3) for cement production. One promising capture method is carbon capture in molten salts (CCMS). CCMS is a thermal swing gas-liquid process that utilizes CaO carbonation to absorb CO2. The molten salt used in this work is 15 wt% CaO in eutectic CaCl2-CaF2 (86.2 : 13.8 wt%). The CaCl2-CaF2-CaO system has been found to have high cyclic absorption capacity (0.6 g CO2/g CaO), though reaction kinetics has yet to be studied. By utilizing a novel experimental setup, data is collected, and a kinetic model is developed, which can be used in a techno-economic evaluation. The model proposes a simplified description of the CaCl2-CaF2-CaO system, with the assumption that the reaction is a first order elementary reaction where CaO and CO2 react to form CaCO3 without any solubility of CO2 in the molten salt. CO2 concentration, temperature, wt% CaO and surface area of molten salt are parameters in the proposed kinetic model. The result is a kinetic model that accurately fits the experimental data with an R2 value above 0.98. It has been found that increasing the CO2 concentration and decreasing the temperature yield a higher CaO to CaCO3 equilibrium conversion.
doi_str_mv 10.5796/electrochemistry.23-69155
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3054733597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_009aca467993446983206b6703576b41</doaj_id><sourcerecordid>3054733597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-7afbd585813ddd2895ae25ace97131e183ea8f5e0b4592ebe7c201595b2457173</originalsourceid><addsrcrecordid>eNplUEtPwzAMjhBITIP_UMS5kHdqblPFADG0C5yjNHVZp64ZSTnw7-kY2wEutmT7e_gj5IrRG2VA32KHfojBr3DTpiF-3XCRa2BKnZAJZ4XOuVTslEyYkDIXSvJzcpnSmlLKKGjgMCF3s-y57XFoffYSauyy0GTlkmezKoW4HdrQZ20_rroB-6x0y7x0cz6WsuMX5KxxXcLL3z4lb_P71_IxXywfnsrZIvcS5JAb11S1KlTBRF3XvADlkCvnEQwTDFkh0BWNQlpJBRwrNJ5TpkBVo3vDjJiSpz1vHdzabmO7cfHLBtfan0GI79bF8YEOLaXgvJPaAIwvaygEp7rShgpldCXZyHW959rG8PGJabDr8Bn70b4VVEkjhIKdIuyvfAwpRWyOqozaXfL2b_KWC_uT_Ihd7rHrNLh3PCIPFv8hgVu5KweG46VfuWixF98II5SX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054733597</pqid></control><display><type>article</type><title>A Kinetic Model of CO2 Absorption in Molten CaO-CaF2-CaCl2</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>IVELAND, Sondre G. ; WESTBYE, Alexander ; MARCHETTI, Jorge M. ; OLSEN, Espen ; NYGÅRD, Heidi S.</creator><creatorcontrib>IVELAND, Sondre G. ; WESTBYE, Alexander ; MARCHETTI, Jorge M. ; OLSEN, Espen ; NYGÅRD, Heidi S.</creatorcontrib><description>Post-combustion CO2 capture is a promising method for removing CO2 from processes where emissions cannot be mitigated by renewable energy input and where the chemical reactions required for production emit CO2, e.g. calcination of calcium carbonate (CaCO3) for cement production. One promising capture method is carbon capture in molten salts (CCMS). CCMS is a thermal swing gas-liquid process that utilizes CaO carbonation to absorb CO2. The molten salt used in this work is 15 wt% CaO in eutectic CaCl2-CaF2 (86.2 : 13.8 wt%). The CaCl2-CaF2-CaO system has been found to have high cyclic absorption capacity (0.6 g CO2/g CaO), though reaction kinetics has yet to be studied. By utilizing a novel experimental setup, data is collected, and a kinetic model is developed, which can be used in a techno-economic evaluation. The model proposes a simplified description of the CaCl2-CaF2-CaO system, with the assumption that the reaction is a first order elementary reaction where CaO and CO2 react to form CaCO3 without any solubility of CO2 in the molten salt. CO2 concentration, temperature, wt% CaO and surface area of molten salt are parameters in the proposed kinetic model. The result is a kinetic model that accurately fits the experimental data with an R2 value above 0.98. It has been found that increasing the CO2 concentration and decreasing the temperature yield a higher CaO to CaCO3 equilibrium conversion.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.23-69155</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Absorption ; Calcium carbonate ; Calcium chloride ; Calcium fluoride ; Calcium oxide ; Carbon Capture ; Carbon Capture in Molten Salt ; Carbon dioxide ; Carbon dioxide concentration ; Carbon sequestration ; Carbonation ; Chemical reactions ; Gas-liquid Reaction ; Kinetic Study ; Molten salts ; Reaction kinetics ; Renewable energy ; Salts ; Technology assessment</subject><ispartof>Electrochemistry, 2024/04/01, Vol.92(4), pp.043014-043014</ispartof><rights>The Author(s) 2023. Published by ECSJ.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c494t-7afbd585813ddd2895ae25ace97131e183ea8f5e0b4592ebe7c201595b2457173</cites><orcidid>0000-0002-1796-7416 ; 0000-0002-5523-7545 ; 0000-0002-9682-7568 ; 0000-0001-9721-1637 ; 0000-0002-1639-7634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,1887,27933,27934</link.rule.ids></links><search><creatorcontrib>IVELAND, Sondre G.</creatorcontrib><creatorcontrib>WESTBYE, Alexander</creatorcontrib><creatorcontrib>MARCHETTI, Jorge M.</creatorcontrib><creatorcontrib>OLSEN, Espen</creatorcontrib><creatorcontrib>NYGÅRD, Heidi S.</creatorcontrib><title>A Kinetic Model of CO2 Absorption in Molten CaO-CaF2-CaCl2</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Post-combustion CO2 capture is a promising method for removing CO2 from processes where emissions cannot be mitigated by renewable energy input and where the chemical reactions required for production emit CO2, e.g. calcination of calcium carbonate (CaCO3) for cement production. One promising capture method is carbon capture in molten salts (CCMS). CCMS is a thermal swing gas-liquid process that utilizes CaO carbonation to absorb CO2. The molten salt used in this work is 15 wt% CaO in eutectic CaCl2-CaF2 (86.2 : 13.8 wt%). The CaCl2-CaF2-CaO system has been found to have high cyclic absorption capacity (0.6 g CO2/g CaO), though reaction kinetics has yet to be studied. By utilizing a novel experimental setup, data is collected, and a kinetic model is developed, which can be used in a techno-economic evaluation. The model proposes a simplified description of the CaCl2-CaF2-CaO system, with the assumption that the reaction is a first order elementary reaction where CaO and CO2 react to form CaCO3 without any solubility of CO2 in the molten salt. CO2 concentration, temperature, wt% CaO and surface area of molten salt are parameters in the proposed kinetic model. The result is a kinetic model that accurately fits the experimental data with an R2 value above 0.98. It has been found that increasing the CO2 concentration and decreasing the temperature yield a higher CaO to CaCO3 equilibrium conversion.</description><subject>Absorption</subject><subject>Calcium carbonate</subject><subject>Calcium chloride</subject><subject>Calcium fluoride</subject><subject>Calcium oxide</subject><subject>Carbon Capture</subject><subject>Carbon Capture in Molten Salt</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Carbon sequestration</subject><subject>Carbonation</subject><subject>Chemical reactions</subject><subject>Gas-liquid Reaction</subject><subject>Kinetic Study</subject><subject>Molten salts</subject><subject>Reaction kinetics</subject><subject>Renewable energy</subject><subject>Salts</subject><subject>Technology assessment</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplUEtPwzAMjhBITIP_UMS5kHdqblPFADG0C5yjNHVZp64ZSTnw7-kY2wEutmT7e_gj5IrRG2VA32KHfojBr3DTpiF-3XCRa2BKnZAJZ4XOuVTslEyYkDIXSvJzcpnSmlLKKGjgMCF3s-y57XFoffYSauyy0GTlkmezKoW4HdrQZ20_rroB-6x0y7x0cz6WsuMX5KxxXcLL3z4lb_P71_IxXywfnsrZIvcS5JAb11S1KlTBRF3XvADlkCvnEQwTDFkh0BWNQlpJBRwrNJ5TpkBVo3vDjJiSpz1vHdzabmO7cfHLBtfan0GI79bF8YEOLaXgvJPaAIwvaygEp7rShgpldCXZyHW959rG8PGJabDr8Bn70b4VVEkjhIKdIuyvfAwpRWyOqozaXfL2b_KWC_uT_Ihd7rHrNLh3PCIPFv8hgVu5KweG46VfuWixF98II5SX</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>IVELAND, Sondre G.</creator><creator>WESTBYE, Alexander</creator><creator>MARCHETTI, Jorge M.</creator><creator>OLSEN, Espen</creator><creator>NYGÅRD, Heidi S.</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1796-7416</orcidid><orcidid>https://orcid.org/0000-0002-5523-7545</orcidid><orcidid>https://orcid.org/0000-0002-9682-7568</orcidid><orcidid>https://orcid.org/0000-0001-9721-1637</orcidid><orcidid>https://orcid.org/0000-0002-1639-7634</orcidid></search><sort><creationdate>20240401</creationdate><title>A Kinetic Model of CO2 Absorption in Molten CaO-CaF2-CaCl2</title><author>IVELAND, Sondre G. ; WESTBYE, Alexander ; MARCHETTI, Jorge M. ; OLSEN, Espen ; NYGÅRD, Heidi S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-7afbd585813ddd2895ae25ace97131e183ea8f5e0b4592ebe7c201595b2457173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Calcium carbonate</topic><topic>Calcium chloride</topic><topic>Calcium fluoride</topic><topic>Calcium oxide</topic><topic>Carbon Capture</topic><topic>Carbon Capture in Molten Salt</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Carbon sequestration</topic><topic>Carbonation</topic><topic>Chemical reactions</topic><topic>Gas-liquid Reaction</topic><topic>Kinetic Study</topic><topic>Molten salts</topic><topic>Reaction kinetics</topic><topic>Renewable energy</topic><topic>Salts</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>IVELAND, Sondre G.</creatorcontrib><creatorcontrib>WESTBYE, Alexander</creatorcontrib><creatorcontrib>MARCHETTI, Jorge M.</creatorcontrib><creatorcontrib>OLSEN, Espen</creatorcontrib><creatorcontrib>NYGÅRD, Heidi S.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>IVELAND, Sondre G.</au><au>WESTBYE, Alexander</au><au>MARCHETTI, Jorge M.</au><au>OLSEN, Espen</au><au>NYGÅRD, Heidi S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kinetic Model of CO2 Absorption in Molten CaO-CaF2-CaCl2</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>92</volume><issue>4</issue><spage>043014</spage><epage>043014</epage><pages>043014-043014</pages><artnum>23-69155</artnum><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Post-combustion CO2 capture is a promising method for removing CO2 from processes where emissions cannot be mitigated by renewable energy input and where the chemical reactions required for production emit CO2, e.g. calcination of calcium carbonate (CaCO3) for cement production. One promising capture method is carbon capture in molten salts (CCMS). CCMS is a thermal swing gas-liquid process that utilizes CaO carbonation to absorb CO2. The molten salt used in this work is 15 wt% CaO in eutectic CaCl2-CaF2 (86.2 : 13.8 wt%). The CaCl2-CaF2-CaO system has been found to have high cyclic absorption capacity (0.6 g CO2/g CaO), though reaction kinetics has yet to be studied. By utilizing a novel experimental setup, data is collected, and a kinetic model is developed, which can be used in a techno-economic evaluation. The model proposes a simplified description of the CaCl2-CaF2-CaO system, with the assumption that the reaction is a first order elementary reaction where CaO and CO2 react to form CaCO3 without any solubility of CO2 in the molten salt. CO2 concentration, temperature, wt% CaO and surface area of molten salt are parameters in the proposed kinetic model. The result is a kinetic model that accurately fits the experimental data with an R2 value above 0.98. It has been found that increasing the CO2 concentration and decreasing the temperature yield a higher CaO to CaCO3 equilibrium conversion.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.23-69155</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1796-7416</orcidid><orcidid>https://orcid.org/0000-0002-5523-7545</orcidid><orcidid>https://orcid.org/0000-0002-9682-7568</orcidid><orcidid>https://orcid.org/0000-0001-9721-1637</orcidid><orcidid>https://orcid.org/0000-0002-1639-7634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-3542
ispartof Electrochemistry, 2024/04/01, Vol.92(4), pp.043014-043014
issn 1344-3542
2186-2451
language eng
recordid cdi_proquest_journals_3054733597
source J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption
Calcium carbonate
Calcium chloride
Calcium fluoride
Calcium oxide
Carbon Capture
Carbon Capture in Molten Salt
Carbon dioxide
Carbon dioxide concentration
Carbon sequestration
Carbonation
Chemical reactions
Gas-liquid Reaction
Kinetic Study
Molten salts
Reaction kinetics
Renewable energy
Salts
Technology assessment
title A Kinetic Model of CO2 Absorption in Molten CaO-CaF2-CaCl2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kinetic%20Model%20of%20CO2%20Absorption%20in%20Molten%20CaO-CaF2-CaCl2&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=IVELAND,%20Sondre%20G.&rft.date=2024-04-01&rft.volume=92&rft.issue=4&rft.spage=043014&rft.epage=043014&rft.pages=043014-043014&rft.artnum=23-69155&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.23-69155&rft_dat=%3Cproquest_doaj_%3E3054733597%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054733597&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_009aca467993446983206b6703576b41&rfr_iscdi=true