Challenges and Opportunities for Large-Scale Exploration with Air-Ground Teams using Semantics
One common and desirable application of robots is exploring potentially hazardous and unstructured environments. Air-ground collaboration offers a synergistic approach to addressing such exploration challenges. In this paper, we demonstrate a system for large-scale exploration using a team of aerial...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cladera, Fernando Miller, Ian D Ravichandran, Zachary Murali, Varun Hughes, Jason M Ani Hsieh Taylor, C J Kumar, Vijay |
description | One common and desirable application of robots is exploring potentially hazardous and unstructured environments. Air-ground collaboration offers a synergistic approach to addressing such exploration challenges. In this paper, we demonstrate a system for large-scale exploration using a team of aerial and ground robots. Our system uses semantics as lingua franca, and relies on fully opportunistic communications. We highlight the unique challenges from this approach, explain our system architecture and showcase lessons learned during our experiments. All our code is open-source, encouraging researchers to use it and build upon. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3054662667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054662667</sourcerecordid><originalsourceid>FETCH-proquest_journals_30546626673</originalsourceid><addsrcrecordid>eNqNi00LgjAAhkcQJOV_GHQerE1n1xCrQ9BBz8mwqZO5rX1QPz8P_YBOLzzP865AQig9oGNGyAak3k8YY8IKkuc0AY9y5EoJPQgPuX7Cu7XGhahlkAvpjYM37gaB6o4rAauPVcbxII2GbxlGeJIOXZyJy7MRfPYweqkHWIuZ6yA7vwPrnisv0t9uwf5cNeUVWWdeUfjQTiY6vaiW4jxjjDBW0P-qL2WEREI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054662667</pqid></control><display><type>article</type><title>Challenges and Opportunities for Large-Scale Exploration with Air-Ground Teams using Semantics</title><source>Free E- Journals</source><creator>Cladera, Fernando ; Miller, Ian D ; Ravichandran, Zachary ; Murali, Varun ; Hughes, Jason ; M Ani Hsieh ; Taylor, C J ; Kumar, Vijay</creator><creatorcontrib>Cladera, Fernando ; Miller, Ian D ; Ravichandran, Zachary ; Murali, Varun ; Hughes, Jason ; M Ani Hsieh ; Taylor, C J ; Kumar, Vijay</creatorcontrib><description>One common and desirable application of robots is exploring potentially hazardous and unstructured environments. Air-ground collaboration offers a synergistic approach to addressing such exploration challenges. In this paper, we demonstrate a system for large-scale exploration using a team of aerial and ground robots. Our system uses semantics as lingua franca, and relies on fully opportunistic communications. We highlight the unique challenges from this approach, explain our system architecture and showcase lessons learned during our experiments. All our code is open-source, encouraging researchers to use it and build upon.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Robots ; Semantics ; Source code ; Teams</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Cladera, Fernando</creatorcontrib><creatorcontrib>Miller, Ian D</creatorcontrib><creatorcontrib>Ravichandran, Zachary</creatorcontrib><creatorcontrib>Murali, Varun</creatorcontrib><creatorcontrib>Hughes, Jason</creatorcontrib><creatorcontrib>M Ani Hsieh</creatorcontrib><creatorcontrib>Taylor, C J</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><title>Challenges and Opportunities for Large-Scale Exploration with Air-Ground Teams using Semantics</title><title>arXiv.org</title><description>One common and desirable application of robots is exploring potentially hazardous and unstructured environments. Air-ground collaboration offers a synergistic approach to addressing such exploration challenges. In this paper, we demonstrate a system for large-scale exploration using a team of aerial and ground robots. Our system uses semantics as lingua franca, and relies on fully opportunistic communications. We highlight the unique challenges from this approach, explain our system architecture and showcase lessons learned during our experiments. All our code is open-source, encouraging researchers to use it and build upon.</description><subject>Robots</subject><subject>Semantics</subject><subject>Source code</subject><subject>Teams</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi00LgjAAhkcQJOV_GHQerE1n1xCrQ9BBz8mwqZO5rX1QPz8P_YBOLzzP865AQig9oGNGyAak3k8YY8IKkuc0AY9y5EoJPQgPuX7Cu7XGhahlkAvpjYM37gaB6o4rAauPVcbxII2GbxlGeJIOXZyJy7MRfPYweqkHWIuZ6yA7vwPrnisv0t9uwf5cNeUVWWdeUfjQTiY6vaiW4jxjjDBW0P-qL2WEREI</recordid><startdate>20240512</startdate><enddate>20240512</enddate><creator>Cladera, Fernando</creator><creator>Miller, Ian D</creator><creator>Ravichandran, Zachary</creator><creator>Murali, Varun</creator><creator>Hughes, Jason</creator><creator>M Ani Hsieh</creator><creator>Taylor, C J</creator><creator>Kumar, Vijay</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240512</creationdate><title>Challenges and Opportunities for Large-Scale Exploration with Air-Ground Teams using Semantics</title><author>Cladera, Fernando ; Miller, Ian D ; Ravichandran, Zachary ; Murali, Varun ; Hughes, Jason ; M Ani Hsieh ; Taylor, C J ; Kumar, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30546626673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Robots</topic><topic>Semantics</topic><topic>Source code</topic><topic>Teams</topic><toplevel>online_resources</toplevel><creatorcontrib>Cladera, Fernando</creatorcontrib><creatorcontrib>Miller, Ian D</creatorcontrib><creatorcontrib>Ravichandran, Zachary</creatorcontrib><creatorcontrib>Murali, Varun</creatorcontrib><creatorcontrib>Hughes, Jason</creatorcontrib><creatorcontrib>M Ani Hsieh</creatorcontrib><creatorcontrib>Taylor, C J</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cladera, Fernando</au><au>Miller, Ian D</au><au>Ravichandran, Zachary</au><au>Murali, Varun</au><au>Hughes, Jason</au><au>M Ani Hsieh</au><au>Taylor, C J</au><au>Kumar, Vijay</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Challenges and Opportunities for Large-Scale Exploration with Air-Ground Teams using Semantics</atitle><jtitle>arXiv.org</jtitle><date>2024-05-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>One common and desirable application of robots is exploring potentially hazardous and unstructured environments. Air-ground collaboration offers a synergistic approach to addressing such exploration challenges. In this paper, we demonstrate a system for large-scale exploration using a team of aerial and ground robots. Our system uses semantics as lingua franca, and relies on fully opportunistic communications. We highlight the unique challenges from this approach, explain our system architecture and showcase lessons learned during our experiments. All our code is open-source, encouraging researchers to use it and build upon.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3054662667 |
source | Free E- Journals |
subjects | Robots Semantics Source code Teams |
title | Challenges and Opportunities for Large-Scale Exploration with Air-Ground Teams using Semantics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Challenges%20and%20Opportunities%20for%20Large-Scale%20Exploration%20with%20Air-Ground%20Teams%20using%20Semantics&rft.jtitle=arXiv.org&rft.au=Cladera,%20Fernando&rft.date=2024-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3054662667%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054662667&rft_id=info:pmid/&rfr_iscdi=true |