An aqueous rechargeable Fe//LiMn2O4 hybrid battery with superior electrochemical performance beyond mainstream Fe-based batteries

Aqueous rechargeable batteries (ARBs) are generally safer than non-aqueous analogues, they are also less-expensive, and more friendly to the environment. However, the inherent disadvantage of the narrow electrochemical window of H 2 O seriously restricts the energy density and output voltage of ARBs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024-06, Vol.17 (6), p.5168-5178
Hauptverfasser: Liu, Yu, Xie, Dehui, Shi, Yuxin, Lv, Rongguan, Chang, Yingna, Sun, Yuzhen, Zhao, Zhiyuan, Wang, Jindi, Song, Kefan, Wu, Huayu, Hoang, Tuan K. A., Xing, Rong, Pang, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5178
container_issue 6
container_start_page 5168
container_title Nano research
container_volume 17
creator Liu, Yu
Xie, Dehui
Shi, Yuxin
Lv, Rongguan
Chang, Yingna
Sun, Yuzhen
Zhao, Zhiyuan
Wang, Jindi
Song, Kefan
Wu, Huayu
Hoang, Tuan K. A.
Xing, Rong
Pang, Huan
description Aqueous rechargeable batteries (ARBs) are generally safer than non-aqueous analogues, they are also less-expensive, and more friendly to the environment. However, the inherent disadvantage of the narrow electrochemical window of H 2 O seriously restricts the energy density and output voltage of ARBs, especially aqueous rechargeable Fe-based batteries. Herein, we introduce a new battery system: the anode contains C@Fe/Fe 2 O 3 composite, which is interfaced with an alkaline electrolyte; the cathode contains LiMn 2 O 4 in contact with a neutral electrolyte. A Li + -conducting membrane is carefully selected to decouple the electrode-electrolyte, which effectively widens the electrochemical window to above 2.65 V, thereby enables an aqueous rechargeable iron battery. Its average output voltage is 1.83 V and its energy density is 235.3 Wh/kg at 549 W/kg. In this work, we propose the energy storage mechanism with the aid of density functional theory (DFT). The calculated reduction potential of the anode agrees with the experimental value. Furthermore, this battery system demonstrates long cycle lifespan of approximately 2500 cycles at 2 A/g, corresponding to a capacity retention of 82.1%. These results are very far superior than those of mainstream aqueous rechargeable Fe-based batteries, which guarantee future investigation for storing electricity energy.
doi_str_mv 10.1007/s12274-024-6440-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054660161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054660161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-78decbc246ae48b4bff4177701d56422b663f99c44fe35fad12e33dd35c88bcd3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqXwAewssQ61HcdJllVFAamoG1hbfowbV3kUOxXKkj_HVahYMZsZje49o7lJck_wI8G4WARCacFSTFnKGcNpdZHMSFWVKY51eZ4JZdfJTQh7jDklrJwl38sOyc8j9MeAPOha-h1I1QBaw2KxcW8d3TJUj8o7g5QcBvAj-nJDjcLxAN71HkEDevC9rqF1WjYorm3vW9lpQArGvjOola4LgwfZRmyqZIAzzEG4Ta6sbALc_fZ58rF-el-9pJvt8-tquUk15eWQFqUBrTRlXAIrFVPWMlIUBSYm54xSxXlmq0ozZiHLrTSEQpYZk-W6LJU22Tx5mLgH38eHwyD2_dF38aTIcM44x4STqCKTSvs-BA9WHLxrpR8FweKUtJiSFjFpcUpaVNFDJ0-I2m4H_o_8v-kHktKDKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054660161</pqid></control><display><type>article</type><title>An aqueous rechargeable Fe//LiMn2O4 hybrid battery with superior electrochemical performance beyond mainstream Fe-based batteries</title><source>SpringerLink Journals</source><creator>Liu, Yu ; Xie, Dehui ; Shi, Yuxin ; Lv, Rongguan ; Chang, Yingna ; Sun, Yuzhen ; Zhao, Zhiyuan ; Wang, Jindi ; Song, Kefan ; Wu, Huayu ; Hoang, Tuan K. A. ; Xing, Rong ; Pang, Huan</creator><creatorcontrib>Liu, Yu ; Xie, Dehui ; Shi, Yuxin ; Lv, Rongguan ; Chang, Yingna ; Sun, Yuzhen ; Zhao, Zhiyuan ; Wang, Jindi ; Song, Kefan ; Wu, Huayu ; Hoang, Tuan K. A. ; Xing, Rong ; Pang, Huan</creatorcontrib><description>Aqueous rechargeable batteries (ARBs) are generally safer than non-aqueous analogues, they are also less-expensive, and more friendly to the environment. However, the inherent disadvantage of the narrow electrochemical window of H 2 O seriously restricts the energy density and output voltage of ARBs, especially aqueous rechargeable Fe-based batteries. Herein, we introduce a new battery system: the anode contains C@Fe/Fe 2 O 3 composite, which is interfaced with an alkaline electrolyte; the cathode contains LiMn 2 O 4 in contact with a neutral electrolyte. A Li + -conducting membrane is carefully selected to decouple the electrode-electrolyte, which effectively widens the electrochemical window to above 2.65 V, thereby enables an aqueous rechargeable iron battery. Its average output voltage is 1.83 V and its energy density is 235.3 Wh/kg at 549 W/kg. In this work, we propose the energy storage mechanism with the aid of density functional theory (DFT). The calculated reduction potential of the anode agrees with the experimental value. Furthermore, this battery system demonstrates long cycle lifespan of approximately 2500 cycles at 2 A/g, corresponding to a capacity retention of 82.1%. These results are very far superior than those of mainstream aqueous rechargeable Fe-based batteries, which guarantee future investigation for storing electricity energy.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6440-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Batteries ; Battery cycles ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Density functional theory ; Electric contacts ; Electric potential ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Energy storage ; Ferric oxide ; Iron ; Life span ; Lithium manganese oxides ; Materials Science ; Nanotechnology ; Rechargeable batteries ; Research Article ; Voltage</subject><ispartof>Nano research, 2024-06, Vol.17 (6), p.5168-5178</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-78decbc246ae48b4bff4177701d56422b663f99c44fe35fad12e33dd35c88bcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6440-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6440-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xie, Dehui</creatorcontrib><creatorcontrib>Shi, Yuxin</creatorcontrib><creatorcontrib>Lv, Rongguan</creatorcontrib><creatorcontrib>Chang, Yingna</creatorcontrib><creatorcontrib>Sun, Yuzhen</creatorcontrib><creatorcontrib>Zhao, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Jindi</creatorcontrib><creatorcontrib>Song, Kefan</creatorcontrib><creatorcontrib>Wu, Huayu</creatorcontrib><creatorcontrib>Hoang, Tuan K. A.</creatorcontrib><creatorcontrib>Xing, Rong</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><title>An aqueous rechargeable Fe//LiMn2O4 hybrid battery with superior electrochemical performance beyond mainstream Fe-based batteries</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Aqueous rechargeable batteries (ARBs) are generally safer than non-aqueous analogues, they are also less-expensive, and more friendly to the environment. However, the inherent disadvantage of the narrow electrochemical window of H 2 O seriously restricts the energy density and output voltage of ARBs, especially aqueous rechargeable Fe-based batteries. Herein, we introduce a new battery system: the anode contains C@Fe/Fe 2 O 3 composite, which is interfaced with an alkaline electrolyte; the cathode contains LiMn 2 O 4 in contact with a neutral electrolyte. A Li + -conducting membrane is carefully selected to decouple the electrode-electrolyte, which effectively widens the electrochemical window to above 2.65 V, thereby enables an aqueous rechargeable iron battery. Its average output voltage is 1.83 V and its energy density is 235.3 Wh/kg at 549 W/kg. In this work, we propose the energy storage mechanism with the aid of density functional theory (DFT). The calculated reduction potential of the anode agrees with the experimental value. Furthermore, this battery system demonstrates long cycle lifespan of approximately 2500 cycles at 2 A/g, corresponding to a capacity retention of 82.1%. These results are very far superior than those of mainstream aqueous rechargeable Fe-based batteries, which guarantee future investigation for storing electricity energy.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Battery cycles</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Ferric oxide</subject><subject>Iron</subject><subject>Life span</subject><subject>Lithium manganese oxides</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Voltage</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEEqXwAewssQ61HcdJllVFAamoG1hbfowbV3kUOxXKkj_HVahYMZsZje49o7lJck_wI8G4WARCacFSTFnKGcNpdZHMSFWVKY51eZ4JZdfJTQh7jDklrJwl38sOyc8j9MeAPOha-h1I1QBaw2KxcW8d3TJUj8o7g5QcBvAj-nJDjcLxAN71HkEDevC9rqF1WjYorm3vW9lpQArGvjOola4LgwfZRmyqZIAzzEG4Ta6sbALc_fZ58rF-el-9pJvt8-tquUk15eWQFqUBrTRlXAIrFVPWMlIUBSYm54xSxXlmq0ozZiHLrTSEQpYZk-W6LJU22Tx5mLgH38eHwyD2_dF38aTIcM44x4STqCKTSvs-BA9WHLxrpR8FweKUtJiSFjFpcUpaVNFDJ0-I2m4H_o_8v-kHktKDKg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Yu</creator><creator>Xie, Dehui</creator><creator>Shi, Yuxin</creator><creator>Lv, Rongguan</creator><creator>Chang, Yingna</creator><creator>Sun, Yuzhen</creator><creator>Zhao, Zhiyuan</creator><creator>Wang, Jindi</creator><creator>Song, Kefan</creator><creator>Wu, Huayu</creator><creator>Hoang, Tuan K. A.</creator><creator>Xing, Rong</creator><creator>Pang, Huan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240601</creationdate><title>An aqueous rechargeable Fe//LiMn2O4 hybrid battery with superior electrochemical performance beyond mainstream Fe-based batteries</title><author>Liu, Yu ; Xie, Dehui ; Shi, Yuxin ; Lv, Rongguan ; Chang, Yingna ; Sun, Yuzhen ; Zhao, Zhiyuan ; Wang, Jindi ; Song, Kefan ; Wu, Huayu ; Hoang, Tuan K. A. ; Xing, Rong ; Pang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-78decbc246ae48b4bff4177701d56422b663f99c44fe35fad12e33dd35c88bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Battery cycles</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Ferric oxide</topic><topic>Iron</topic><topic>Life span</topic><topic>Lithium manganese oxides</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xie, Dehui</creatorcontrib><creatorcontrib>Shi, Yuxin</creatorcontrib><creatorcontrib>Lv, Rongguan</creatorcontrib><creatorcontrib>Chang, Yingna</creatorcontrib><creatorcontrib>Sun, Yuzhen</creatorcontrib><creatorcontrib>Zhao, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Jindi</creatorcontrib><creatorcontrib>Song, Kefan</creatorcontrib><creatorcontrib>Wu, Huayu</creatorcontrib><creatorcontrib>Hoang, Tuan K. A.</creatorcontrib><creatorcontrib>Xing, Rong</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu</au><au>Xie, Dehui</au><au>Shi, Yuxin</au><au>Lv, Rongguan</au><au>Chang, Yingna</au><au>Sun, Yuzhen</au><au>Zhao, Zhiyuan</au><au>Wang, Jindi</au><au>Song, Kefan</au><au>Wu, Huayu</au><au>Hoang, Tuan K. A.</au><au>Xing, Rong</au><au>Pang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An aqueous rechargeable Fe//LiMn2O4 hybrid battery with superior electrochemical performance beyond mainstream Fe-based batteries</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>5168</spage><epage>5178</epage><pages>5168-5178</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Aqueous rechargeable batteries (ARBs) are generally safer than non-aqueous analogues, they are also less-expensive, and more friendly to the environment. However, the inherent disadvantage of the narrow electrochemical window of H 2 O seriously restricts the energy density and output voltage of ARBs, especially aqueous rechargeable Fe-based batteries. Herein, we introduce a new battery system: the anode contains C@Fe/Fe 2 O 3 composite, which is interfaced with an alkaline electrolyte; the cathode contains LiMn 2 O 4 in contact with a neutral electrolyte. A Li + -conducting membrane is carefully selected to decouple the electrode-electrolyte, which effectively widens the electrochemical window to above 2.65 V, thereby enables an aqueous rechargeable iron battery. Its average output voltage is 1.83 V and its energy density is 235.3 Wh/kg at 549 W/kg. In this work, we propose the energy storage mechanism with the aid of density functional theory (DFT). The calculated reduction potential of the anode agrees with the experimental value. Furthermore, this battery system demonstrates long cycle lifespan of approximately 2500 cycles at 2 A/g, corresponding to a capacity retention of 82.1%. These results are very far superior than those of mainstream aqueous rechargeable Fe-based batteries, which guarantee future investigation for storing electricity energy.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6440-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024-06, Vol.17 (6), p.5168-5178
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_3054660161
source SpringerLink Journals
subjects Atomic/Molecular Structure and Spectra
Batteries
Battery cycles
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Density functional theory
Electric contacts
Electric potential
Electrochemical analysis
Electrochemistry
Electrolytes
Energy storage
Ferric oxide
Iron
Life span
Lithium manganese oxides
Materials Science
Nanotechnology
Rechargeable batteries
Research Article
Voltage
title An aqueous rechargeable Fe//LiMn2O4 hybrid battery with superior electrochemical performance beyond mainstream Fe-based batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20aqueous%20rechargeable%20Fe//LiMn2O4%20hybrid%20battery%20with%20superior%20electrochemical%20performance%20beyond%20mainstream%20Fe-based%20batteries&rft.jtitle=Nano%20research&rft.au=Liu,%20Yu&rft.date=2024-06-01&rft.volume=17&rft.issue=6&rft.spage=5168&rft.epage=5178&rft.pages=5168-5178&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6440-9&rft_dat=%3Cproquest_cross%3E3054660161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054660161&rft_id=info:pmid/&rfr_iscdi=true