Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution
Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly d...
Gespeichert in:
Veröffentlicht in: | Nano research 2024-06, Vol.17 (6), p.5261-5269 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5269 |
---|---|
container_issue | 6 |
container_start_page | 5261 |
container_title | Nano research |
container_volume | 17 |
creator | Li, Zhiming Li, Xinyu Ma, Haiqing Ye, Chenliang Yu, Hongan Nie, Long Zheng, Meng Wang, Jin |
description | Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm
−2
and 116 mV at 200 mA·cm
−2
with a Ru loading of 0.025 mg·cm
−2
. Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm
−2
) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm
−2
), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density. |
doi_str_mv | 10.1007/s12274-024-6507-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054659826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054659826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-449016d44567a9c20fb880cdaeb772e3a129573f18560245ce7f64543df4ecdd3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhosoOF4ewF3AdTRJ06RdDoM3GBRE1yFNTqcdO8mYpAN9Ax_bDqO48mzOOfBf4MuyK0puKCHyNlLGJMeEcSwKIrE8yma0qkpMpjn-vSnjp9lZjGtCBKO8nGVfc2daHzq3Qq8DMv0QE4SIkkdtt2r7EVlowKRuB-gZW78Fi4wOtXfIaefTUENEu04jjVILYaN7HFtvPlBMQSdYjajxYXp03QPqnJ3iQ6d71I42-BU4BDvfD6nz7iI7aXQf4fJnn2fv93dvi0e8fHl4WsyX2DBRJsx5RaiwnBdC6sow0tRlSYzVUEvJINeUVYXMG1oWYoJRGJCN4AXPbcPBWJufZ9eH3G3wnwPEpNZ-CG6qVDkpuCiqkolJRQ8qE3yMARq1Dd1Gh1FRovbA1QG4mjrUHriSk4cdPHG75wnhL_l_0zcObIWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054659826</pqid></control><display><type>article</type><title>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Zhiming ; Li, Xinyu ; Ma, Haiqing ; Ye, Chenliang ; Yu, Hongan ; Nie, Long ; Zheng, Meng ; Wang, Jin</creator><creatorcontrib>Li, Zhiming ; Li, Xinyu ; Ma, Haiqing ; Ye, Chenliang ; Yu, Hongan ; Nie, Long ; Zheng, Meng ; Wang, Jin</creatorcontrib><description>Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm
−2
and 116 mV at 200 mA·cm
−2
with a Ru loading of 0.025 mg·cm
−2
. Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm
−2
) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm
−2
), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6507-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Adhesive strength ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Carbon nanotubes ; Catalysts ; Catalytic activity ; Chemistry and Materials Science ; Clusters ; Condensed Matter Physics ; Contact angle ; Current density ; Electrocatalysts ; Electrolysis ; Evolution ; Hydrogen ; Hydrogen evolution reactions ; Low currents ; Materials Science ; Nanotechnology ; Nanotubes ; Performance enhancement ; Research Article ; Ruthenium ; Stability ; Surface energy ; Surface properties</subject><ispartof>Nano research, 2024-06, Vol.17 (6), p.5261-5269</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-449016d44567a9c20fb880cdaeb772e3a129573f18560245ce7f64543df4ecdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6507-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6507-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Zhiming</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Ma, Haiqing</creatorcontrib><creatorcontrib>Ye, Chenliang</creatorcontrib><creatorcontrib>Yu, Hongan</creatorcontrib><creatorcontrib>Nie, Long</creatorcontrib><creatorcontrib>Zheng, Meng</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm
−2
and 116 mV at 200 mA·cm
−2
with a Ru loading of 0.025 mg·cm
−2
. Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm
−2
) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm
−2
), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.</description><subject>Adhesive strength</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Condensed Matter Physics</subject><subject>Contact angle</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Evolution</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Low currents</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Performance enhancement</subject><subject>Research Article</subject><subject>Ruthenium</subject><subject>Stability</subject><subject>Surface energy</subject><subject>Surface properties</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhosoOF4ewF3AdTRJ06RdDoM3GBRE1yFNTqcdO8mYpAN9Ax_bDqO48mzOOfBf4MuyK0puKCHyNlLGJMeEcSwKIrE8yma0qkpMpjn-vSnjp9lZjGtCBKO8nGVfc2daHzq3Qq8DMv0QE4SIkkdtt2r7EVlowKRuB-gZW78Fi4wOtXfIaefTUENEu04jjVILYaN7HFtvPlBMQSdYjajxYXp03QPqnJ3iQ6d71I42-BU4BDvfD6nz7iI7aXQf4fJnn2fv93dvi0e8fHl4WsyX2DBRJsx5RaiwnBdC6sow0tRlSYzVUEvJINeUVYXMG1oWYoJRGJCN4AXPbcPBWJufZ9eH3G3wnwPEpNZ-CG6qVDkpuCiqkolJRQ8qE3yMARq1Dd1Gh1FRovbA1QG4mjrUHriSk4cdPHG75wnhL_l_0zcObIWv</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Zhiming</creator><creator>Li, Xinyu</creator><creator>Ma, Haiqing</creator><creator>Ye, Chenliang</creator><creator>Yu, Hongan</creator><creator>Nie, Long</creator><creator>Zheng, Meng</creator><creator>Wang, Jin</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240601</creationdate><title>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</title><author>Li, Zhiming ; Li, Xinyu ; Ma, Haiqing ; Ye, Chenliang ; Yu, Hongan ; Nie, Long ; Zheng, Meng ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-449016d44567a9c20fb880cdaeb772e3a129573f18560245ce7f64543df4ecdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive strength</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Condensed Matter Physics</topic><topic>Contact angle</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Evolution</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Low currents</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Performance enhancement</topic><topic>Research Article</topic><topic>Ruthenium</topic><topic>Stability</topic><topic>Surface energy</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiming</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Ma, Haiqing</creatorcontrib><creatorcontrib>Ye, Chenliang</creatorcontrib><creatorcontrib>Yu, Hongan</creatorcontrib><creatorcontrib>Nie, Long</creatorcontrib><creatorcontrib>Zheng, Meng</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiming</au><au>Li, Xinyu</au><au>Ma, Haiqing</au><au>Ye, Chenliang</au><au>Yu, Hongan</au><au>Nie, Long</au><au>Zheng, Meng</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>5261</spage><epage>5269</epage><pages>5261-5269</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm
−2
and 116 mV at 200 mA·cm
−2
with a Ru loading of 0.025 mg·cm
−2
. Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm
−2
) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm
−2
), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6507-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024-06, Vol.17 (6), p.5261-5269 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_3054659826 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adhesive strength Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon Carbon nanotubes Catalysts Catalytic activity Chemistry and Materials Science Clusters Condensed Matter Physics Contact angle Current density Electrocatalysts Electrolysis Evolution Hydrogen Hydrogen evolution reactions Low currents Materials Science Nanotechnology Nanotubes Performance enhancement Research Article Ruthenium Stability Surface energy Surface properties |
title | Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anchoring%20Ru%20clusters%20to%20highly%20defective%20N-doped%20carbon%20nanotubes%20via%20a%20thermal-shock%20strategy%20for%20stable%20industrial%20hydrogen%20evolution&rft.jtitle=Nano%20research&rft.au=Li,%20Zhiming&rft.date=2024-06-01&rft.volume=17&rft.issue=6&rft.spage=5261&rft.epage=5269&rft.pages=5261-5269&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6507-7&rft_dat=%3Cproquest_cross%3E3054659826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054659826&rft_id=info:pmid/&rfr_iscdi=true |