Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution

Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024-06, Vol.17 (6), p.5261-5269
Hauptverfasser: Li, Zhiming, Li, Xinyu, Ma, Haiqing, Ye, Chenliang, Yu, Hongan, Nie, Long, Zheng, Meng, Wang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5269
container_issue 6
container_start_page 5261
container_title Nano research
container_volume 17
creator Li, Zhiming
Li, Xinyu
Ma, Haiqing
Ye, Chenliang
Yu, Hongan
Nie, Long
Zheng, Meng
Wang, Jin
description Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm −2 and 116 mV at 200 mA·cm −2 with a Ru loading of 0.025 mg·cm −2 . Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm −2 ) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm −2 ), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.
doi_str_mv 10.1007/s12274-024-6507-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054659826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054659826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-449016d44567a9c20fb880cdaeb772e3a129573f18560245ce7f64543df4ecdd3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhosoOF4ewF3AdTRJ06RdDoM3GBRE1yFNTqcdO8mYpAN9Ax_bDqO48mzOOfBf4MuyK0puKCHyNlLGJMeEcSwKIrE8yma0qkpMpjn-vSnjp9lZjGtCBKO8nGVfc2daHzq3Qq8DMv0QE4SIkkdtt2r7EVlowKRuB-gZW78Fi4wOtXfIaefTUENEu04jjVILYaN7HFtvPlBMQSdYjajxYXp03QPqnJ3iQ6d71I42-BU4BDvfD6nz7iI7aXQf4fJnn2fv93dvi0e8fHl4WsyX2DBRJsx5RaiwnBdC6sow0tRlSYzVUEvJINeUVYXMG1oWYoJRGJCN4AXPbcPBWJufZ9eH3G3wnwPEpNZ-CG6qVDkpuCiqkolJRQ8qE3yMARq1Dd1Gh1FRovbA1QG4mjrUHriSk4cdPHG75wnhL_l_0zcObIWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054659826</pqid></control><display><type>article</type><title>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Zhiming ; Li, Xinyu ; Ma, Haiqing ; Ye, Chenliang ; Yu, Hongan ; Nie, Long ; Zheng, Meng ; Wang, Jin</creator><creatorcontrib>Li, Zhiming ; Li, Xinyu ; Ma, Haiqing ; Ye, Chenliang ; Yu, Hongan ; Nie, Long ; Zheng, Meng ; Wang, Jin</creatorcontrib><description>Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm −2 and 116 mV at 200 mA·cm −2 with a Ru loading of 0.025 mg·cm −2 . Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm −2 ) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm −2 ), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6507-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Adhesive strength ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Carbon nanotubes ; Catalysts ; Catalytic activity ; Chemistry and Materials Science ; Clusters ; Condensed Matter Physics ; Contact angle ; Current density ; Electrocatalysts ; Electrolysis ; Evolution ; Hydrogen ; Hydrogen evolution reactions ; Low currents ; Materials Science ; Nanotechnology ; Nanotubes ; Performance enhancement ; Research Article ; Ruthenium ; Stability ; Surface energy ; Surface properties</subject><ispartof>Nano research, 2024-06, Vol.17 (6), p.5261-5269</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-449016d44567a9c20fb880cdaeb772e3a129573f18560245ce7f64543df4ecdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6507-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6507-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Zhiming</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Ma, Haiqing</creatorcontrib><creatorcontrib>Ye, Chenliang</creatorcontrib><creatorcontrib>Yu, Hongan</creatorcontrib><creatorcontrib>Nie, Long</creatorcontrib><creatorcontrib>Zheng, Meng</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm −2 and 116 mV at 200 mA·cm −2 with a Ru loading of 0.025 mg·cm −2 . Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm −2 ) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm −2 ), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.</description><subject>Adhesive strength</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Condensed Matter Physics</subject><subject>Contact angle</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Evolution</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Low currents</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Performance enhancement</subject><subject>Research Article</subject><subject>Ruthenium</subject><subject>Stability</subject><subject>Surface energy</subject><subject>Surface properties</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhosoOF4ewF3AdTRJ06RdDoM3GBRE1yFNTqcdO8mYpAN9Ax_bDqO48mzOOfBf4MuyK0puKCHyNlLGJMeEcSwKIrE8yma0qkpMpjn-vSnjp9lZjGtCBKO8nGVfc2daHzq3Qq8DMv0QE4SIkkdtt2r7EVlowKRuB-gZW78Fi4wOtXfIaefTUENEu04jjVILYaN7HFtvPlBMQSdYjajxYXp03QPqnJ3iQ6d71I42-BU4BDvfD6nz7iI7aXQf4fJnn2fv93dvi0e8fHl4WsyX2DBRJsx5RaiwnBdC6sow0tRlSYzVUEvJINeUVYXMG1oWYoJRGJCN4AXPbcPBWJufZ9eH3G3wnwPEpNZ-CG6qVDkpuCiqkolJRQ8qE3yMARq1Dd1Gh1FRovbA1QG4mjrUHriSk4cdPHG75wnhL_l_0zcObIWv</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Zhiming</creator><creator>Li, Xinyu</creator><creator>Ma, Haiqing</creator><creator>Ye, Chenliang</creator><creator>Yu, Hongan</creator><creator>Nie, Long</creator><creator>Zheng, Meng</creator><creator>Wang, Jin</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240601</creationdate><title>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</title><author>Li, Zhiming ; Li, Xinyu ; Ma, Haiqing ; Ye, Chenliang ; Yu, Hongan ; Nie, Long ; Zheng, Meng ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-449016d44567a9c20fb880cdaeb772e3a129573f18560245ce7f64543df4ecdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive strength</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Condensed Matter Physics</topic><topic>Contact angle</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Evolution</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Low currents</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Performance enhancement</topic><topic>Research Article</topic><topic>Ruthenium</topic><topic>Stability</topic><topic>Surface energy</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiming</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Ma, Haiqing</creatorcontrib><creatorcontrib>Ye, Chenliang</creatorcontrib><creatorcontrib>Yu, Hongan</creatorcontrib><creatorcontrib>Nie, Long</creatorcontrib><creatorcontrib>Zheng, Meng</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiming</au><au>Li, Xinyu</au><au>Ma, Haiqing</au><au>Ye, Chenliang</au><au>Yu, Hongan</au><au>Nie, Long</au><au>Zheng, Meng</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>5261</spage><epage>5269</epage><pages>5261-5269</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal-support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (η) of 12 mV at 10 mA·cm −2 and 116 mV at 200 mA·cm −2 with a Ru loading of 0.025 mg·cm −2 . Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm −2 ) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm −2 ), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6507-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024-06, Vol.17 (6), p.5261-5269
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_3054659826
source SpringerLink Journals - AutoHoldings
subjects Adhesive strength
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon
Carbon nanotubes
Catalysts
Catalytic activity
Chemistry and Materials Science
Clusters
Condensed Matter Physics
Contact angle
Current density
Electrocatalysts
Electrolysis
Evolution
Hydrogen
Hydrogen evolution reactions
Low currents
Materials Science
Nanotechnology
Nanotubes
Performance enhancement
Research Article
Ruthenium
Stability
Surface energy
Surface properties
title Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anchoring%20Ru%20clusters%20to%20highly%20defective%20N-doped%20carbon%20nanotubes%20via%20a%20thermal-shock%20strategy%20for%20stable%20industrial%20hydrogen%20evolution&rft.jtitle=Nano%20research&rft.au=Li,%20Zhiming&rft.date=2024-06-01&rft.volume=17&rft.issue=6&rft.spage=5261&rft.epage=5269&rft.pages=5261-5269&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6507-7&rft_dat=%3Cproquest_cross%3E3054659826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054659826&rft_id=info:pmid/&rfr_iscdi=true