Sign Stitching: A Novel Approach to Sign Language Production

Sign Language Production (SLP) is a challenging task, given the limited resources available and the inherent diversity within sign data. As a result, previous works have suffered from the problem of regression to the mean, leading to under-articulated and incomprehensible signing. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Walsh, Harry, Saunders, Ben, Bowden, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Walsh, Harry
Saunders, Ben
Bowden, Richard
description Sign Language Production (SLP) is a challenging task, given the limited resources available and the inherent diversity within sign data. As a result, previous works have suffered from the problem of regression to the mean, leading to under-articulated and incomprehensible signing. In this paper, we propose using dictionary examples to create expressive sign language sequences. However, simply concatenating the signs would create robotic and unnatural sequences. Therefore, we present a 7-step approach to effectively stitch the signs together. First, by normalising each sign into a canonical pose, cropping and stitching we create a continuous sequence. Then by applying filtering in the frequency domain and resampling each sign we create cohesive natural sequences, that mimic the prosody found in the original data. We leverage the SignGAN model to map the output to a photo-realistic signer and present a complete Text-to-Sign (T2S) SLP pipeline. Our evaluation demonstrates the effectiveness of this approach, showcasing state-of-the-art performance across all datasets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3054659318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054659318</sourcerecordid><originalsourceid>FETCH-proquest_journals_30546593183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCc5Mz1MILsksSc7IzEu3UnBU8MsvS81RcCwoKMpPTM5QKMlXAKvxScxLL01MT1UIKMpPKU0uyczP42FgTUvMKU7lhdLcDMpuriHOHrpArYWlqcUl8Vn5pUV5QKl4YwNTEzNTS2NDC2PiVAEAyxI2ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054659318</pqid></control><display><type>article</type><title>Sign Stitching: A Novel Approach to Sign Language Production</title><source>Free E- Journals</source><creator>Walsh, Harry ; Saunders, Ben ; Bowden, Richard</creator><creatorcontrib>Walsh, Harry ; Saunders, Ben ; Bowden, Richard</creatorcontrib><description>Sign Language Production (SLP) is a challenging task, given the limited resources available and the inherent diversity within sign data. As a result, previous works have suffered from the problem of regression to the mean, leading to under-articulated and incomprehensible signing. In this paper, we propose using dictionary examples to create expressive sign language sequences. However, simply concatenating the signs would create robotic and unnatural sequences. Therefore, we present a 7-step approach to effectively stitch the signs together. First, by normalising each sign into a canonical pose, cropping and stitching we create a continuous sequence. Then by applying filtering in the frequency domain and resampling each sign we create cohesive natural sequences, that mimic the prosody found in the original data. We leverage the SignGAN model to map the output to a photo-realistic signer and present a complete Text-to-Sign (T2S) SLP pipeline. Our evaluation demonstrates the effectiveness of this approach, showcasing state-of-the-art performance across all datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Regression to mean effect ; Resampling ; Sign language ; Stitching</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Walsh, Harry</creatorcontrib><creatorcontrib>Saunders, Ben</creatorcontrib><creatorcontrib>Bowden, Richard</creatorcontrib><title>Sign Stitching: A Novel Approach to Sign Language Production</title><title>arXiv.org</title><description>Sign Language Production (SLP) is a challenging task, given the limited resources available and the inherent diversity within sign data. As a result, previous works have suffered from the problem of regression to the mean, leading to under-articulated and incomprehensible signing. In this paper, we propose using dictionary examples to create expressive sign language sequences. However, simply concatenating the signs would create robotic and unnatural sequences. Therefore, we present a 7-step approach to effectively stitch the signs together. First, by normalising each sign into a canonical pose, cropping and stitching we create a continuous sequence. Then by applying filtering in the frequency domain and resampling each sign we create cohesive natural sequences, that mimic the prosody found in the original data. We leverage the SignGAN model to map the output to a photo-realistic signer and present a complete Text-to-Sign (T2S) SLP pipeline. Our evaluation demonstrates the effectiveness of this approach, showcasing state-of-the-art performance across all datasets.</description><subject>Regression to mean effect</subject><subject>Resampling</subject><subject>Sign language</subject><subject>Stitching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCc5Mz1MILsksSc7IzEu3UnBU8MsvS81RcCwoKMpPTM5QKMlXAKvxScxLL01MT1UIKMpPKU0uyczP42FgTUvMKU7lhdLcDMpuriHOHrpArYWlqcUl8Vn5pUV5QKl4YwNTEzNTS2NDC2PiVAEAyxI2ww</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Walsh, Harry</creator><creator>Saunders, Ben</creator><creator>Bowden, Richard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241014</creationdate><title>Sign Stitching: A Novel Approach to Sign Language Production</title><author>Walsh, Harry ; Saunders, Ben ; Bowden, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30546593183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Regression to mean effect</topic><topic>Resampling</topic><topic>Sign language</topic><topic>Stitching</topic><toplevel>online_resources</toplevel><creatorcontrib>Walsh, Harry</creatorcontrib><creatorcontrib>Saunders, Ben</creatorcontrib><creatorcontrib>Bowden, Richard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, Harry</au><au>Saunders, Ben</au><au>Bowden, Richard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sign Stitching: A Novel Approach to Sign Language Production</atitle><jtitle>arXiv.org</jtitle><date>2024-10-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Sign Language Production (SLP) is a challenging task, given the limited resources available and the inherent diversity within sign data. As a result, previous works have suffered from the problem of regression to the mean, leading to under-articulated and incomprehensible signing. In this paper, we propose using dictionary examples to create expressive sign language sequences. However, simply concatenating the signs would create robotic and unnatural sequences. Therefore, we present a 7-step approach to effectively stitch the signs together. First, by normalising each sign into a canonical pose, cropping and stitching we create a continuous sequence. Then by applying filtering in the frequency domain and resampling each sign we create cohesive natural sequences, that mimic the prosody found in the original data. We leverage the SignGAN model to map the output to a photo-realistic signer and present a complete Text-to-Sign (T2S) SLP pipeline. Our evaluation demonstrates the effectiveness of this approach, showcasing state-of-the-art performance across all datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3054659318
source Free E- Journals
subjects Regression to mean effect
Resampling
Sign language
Stitching
title Sign Stitching: A Novel Approach to Sign Language Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sign%20Stitching:%20A%20Novel%20Approach%20to%20Sign%20Language%20Production&rft.jtitle=arXiv.org&rft.au=Walsh,%20Harry&rft.date=2024-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3054659318%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054659318&rft_id=info:pmid/&rfr_iscdi=true