Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control
S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C 3 N 4 (CN). In this study, S-doped g-C 3 N 4 /g-C 3 N 4 (SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with int...
Gespeichert in:
Veröffentlicht in: | Nano research 2024-06, Vol.17 (6), p.4961-4970 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4970 |
---|---|
container_issue | 6 |
container_start_page | 4961 |
container_title | Nano research |
container_volume | 17 |
creator | Gu, Yongpan Li, Yike Feng, Haoqiang Han, Yanan Li, Zhongjun |
description | S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C
3
N
4
(CN). In this study, S-doped g-C
3
N
4
/g-C
3
N
4
(SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance.
In-situ
Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (
τ
1
: 9.7,
τ
2
: 110, and
τ
3
: 1343.5 ps) in comparison to those of CN (
τ
1
: 4.86,
τ
2
: 55.2, and
τ
3
: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 µmol·g
−1
·h
−1
, which is 20.4 times higher than that of CN (265.7 µmol·g
−1
·h
−1
). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion. |
doi_str_mv | 10.1007/s12274-024-6501-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054657215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054657215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2ac39b9d5a7820f55014e4ebb3a60b4bb27b23652463aefa656d414e751e0eea3</originalsourceid><addsrcrecordid>eNp1kUFvGyEQhVdVI9VN-gN6Q8qZFFhg7d4SK2ksRe0hyRmx7LDGwuAAG2n_S35ssZwqp85l5vDeN3p6TfOdkitKSPcjU8Y6jgnjWApCMfnULOhqtcSkzud_N2X8S_M15x0hklG-XDRvN5PzBbuAwIMpyRlkHfgBuTBMBgb0iLPZwh7QiNftb462cR93UzDFxYBsTAisdcZBKOiwjSUaXbSfS-Vs5yHFESr5NfrpqP-JNqFAsto47RGE0QWA5MKIdBjQPqZK8HGckYmhpOgvmjOrfYZv7_u8eb67fVrf44c_vzbr6wdsWioLZtq0q341CN0tGbGi5ufAoe9bLUnP-551PWulYFy2GqyWQg68SjpBgQDo9ry5PHEPKb5MkIvaxSmF-lK1RHApOkZFVdGTyqSYcwKrDsntdZoVJepYgjqVoGoJ6liCItXDTp58OOaE9EH-v-kvXAaNLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054657215</pqid></control><display><type>article</type><title>Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control</title><source>Springer Nature - Complete Springer Journals</source><creator>Gu, Yongpan ; Li, Yike ; Feng, Haoqiang ; Han, Yanan ; Li, Zhongjun</creator><creatorcontrib>Gu, Yongpan ; Li, Yike ; Feng, Haoqiang ; Han, Yanan ; Li, Zhongjun</creatorcontrib><description>S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C
3
N
4
(CN). In this study, S-doped g-C
3
N
4
/g-C
3
N
4
(SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance.
In-situ
Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (
τ
1
: 9.7,
τ
2
: 110, and
τ
3
: 1343.5 ps) in comparison to those of CN (
τ
1
: 4.86,
τ
2
: 55.2, and
τ
3
: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 µmol·g
−1
·h
−1
, which is 20.4 times higher than that of CN (265.7 µmol·g
−1
·h
−1
). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6501-0</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Absorption spectra ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon nitride ; Catalytic activity ; Chemistry and Materials Science ; Condensed Matter Physics ; Density functional theory ; Electric fields ; Electrons ; Energy conversion ; Evolution ; Holes (electron deficiencies) ; Homojunctions ; Hydrogen ; Hydrogen evolution ; Irradiation ; Light irradiation ; Materials Science ; Morphology ; Nanotechnology ; Photocatalysis ; Quantum efficiency ; Research Article ; Separation ; Solar energy ; Solar energy conversion</subject><ispartof>Nano research, 2024-06, Vol.17 (6), p.4961-4970</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2ac39b9d5a7820f55014e4ebb3a60b4bb27b23652463aefa656d414e751e0eea3</citedby><cites>FETCH-LOGICAL-c316t-2ac39b9d5a7820f55014e4ebb3a60b4bb27b23652463aefa656d414e751e0eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6501-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6501-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gu, Yongpan</creatorcontrib><creatorcontrib>Li, Yike</creatorcontrib><creatorcontrib>Feng, Haoqiang</creatorcontrib><creatorcontrib>Han, Yanan</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><title>Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C
3
N
4
(CN). In this study, S-doped g-C
3
N
4
/g-C
3
N
4
(SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance.
In-situ
Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (
τ
1
: 9.7,
τ
2
: 110, and
τ
3
: 1343.5 ps) in comparison to those of CN (
τ
1
: 4.86,
τ
2
: 55.2, and
τ
3
: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 µmol·g
−1
·h
−1
, which is 20.4 times higher than that of CN (265.7 µmol·g
−1
·h
−1
). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion.</description><subject>Absorption spectra</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Energy conversion</subject><subject>Evolution</subject><subject>Holes (electron deficiencies)</subject><subject>Homojunctions</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Photocatalysis</subject><subject>Quantum efficiency</subject><subject>Research Article</subject><subject>Separation</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvGyEQhVdVI9VN-gN6Q8qZFFhg7d4SK2ksRe0hyRmx7LDGwuAAG2n_S35ssZwqp85l5vDeN3p6TfOdkitKSPcjU8Y6jgnjWApCMfnULOhqtcSkzud_N2X8S_M15x0hklG-XDRvN5PzBbuAwIMpyRlkHfgBuTBMBgb0iLPZwh7QiNftb462cR93UzDFxYBsTAisdcZBKOiwjSUaXbSfS-Vs5yHFESr5NfrpqP-JNqFAsto47RGE0QWA5MKIdBjQPqZK8HGckYmhpOgvmjOrfYZv7_u8eb67fVrf44c_vzbr6wdsWioLZtq0q341CN0tGbGi5ufAoe9bLUnP-551PWulYFy2GqyWQg68SjpBgQDo9ry5PHEPKb5MkIvaxSmF-lK1RHApOkZFVdGTyqSYcwKrDsntdZoVJepYgjqVoGoJ6liCItXDTp58OOaE9EH-v-kvXAaNLg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gu, Yongpan</creator><creator>Li, Yike</creator><creator>Feng, Haoqiang</creator><creator>Han, Yanan</creator><creator>Li, Zhongjun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240601</creationdate><title>Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control</title><author>Gu, Yongpan ; Li, Yike ; Feng, Haoqiang ; Han, Yanan ; Li, Zhongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2ac39b9d5a7820f55014e4ebb3a60b4bb27b23652463aefa656d414e751e0eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Energy conversion</topic><topic>Evolution</topic><topic>Holes (electron deficiencies)</topic><topic>Homojunctions</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Photocatalysis</topic><topic>Quantum efficiency</topic><topic>Research Article</topic><topic>Separation</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yongpan</creatorcontrib><creatorcontrib>Li, Yike</creatorcontrib><creatorcontrib>Feng, Haoqiang</creatorcontrib><creatorcontrib>Han, Yanan</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yongpan</au><au>Li, Yike</au><au>Feng, Haoqiang</au><au>Han, Yanan</au><au>Li, Zhongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>4961</spage><epage>4970</epage><pages>4961-4970</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C
3
N
4
(CN). In this study, S-doped g-C
3
N
4
/g-C
3
N
4
(SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance.
In-situ
Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (
τ
1
: 9.7,
τ
2
: 110, and
τ
3
: 1343.5 ps) in comparison to those of CN (
τ
1
: 4.86,
τ
2
: 55.2, and
τ
3
: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 µmol·g
−1
·h
−1
, which is 20.4 times higher than that of CN (265.7 µmol·g
−1
·h
−1
). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6501-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024-06, Vol.17 (6), p.4961-4970 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_3054657215 |
source | Springer Nature - Complete Springer Journals |
subjects | Absorption spectra Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon nitride Catalytic activity Chemistry and Materials Science Condensed Matter Physics Density functional theory Electric fields Electrons Energy conversion Evolution Holes (electron deficiencies) Homojunctions Hydrogen Hydrogen evolution Irradiation Light irradiation Materials Science Morphology Nanotechnology Photocatalysis Quantum efficiency Research Article Separation Solar energy Solar energy conversion |
title | Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Built-in%20electric%20field%20induced%20S-scheme%20g-C3N4%20homojunction%20for%20efficient%20photocatalytic%20hydrogen%20evolution:%20Interfacial%20engineering%20and%20morphology%20control&rft.jtitle=Nano%20research&rft.au=Gu,%20Yongpan&rft.date=2024-06-01&rft.volume=17&rft.issue=6&rft.spage=4961&rft.epage=4970&rft.pages=4961-4970&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6501-0&rft_dat=%3Cproquest_cross%3E3054657215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054657215&rft_id=info:pmid/&rfr_iscdi=true |