Policy Iteration for Pareto-Optimal Policies in Stochastic Stackelberg Games
In general-sum stochastic games, a stationary Stackelberg equilibrium (SSE) does not always exist, in which the leader maximizes leader's return for all the initial states when the follower takes the best response against the leader's policy. Existing methods of determining the SSEs requir...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kudo, Mikoto Akimoto, Yohei |
description | In general-sum stochastic games, a stationary Stackelberg equilibrium (SSE) does not always exist, in which the leader maximizes leader's return for all the initial states when the follower takes the best response against the leader's policy. Existing methods of determining the SSEs require strong assumptions to guarantee the convergence and the coincidence of the limit with the SSE. Moreover, our analysis suggests that the performance at the fixed points of these methods is not reasonable when they are not SSEs. Herein, we introduced the concept of Pareto-optimality as a reasonable alternative to SSEs. We derive the policy improvement theorem for stochastic games with the best-response follower and propose an iterative algorithm to determine the Pareto-optimal policies based on it. Monotone improvement and convergence of the proposed approach are proved, and its convergence to SSEs is proved in a special case. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3054656826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054656826</sourcerecordid><originalsourceid>FETCH-proquest_journals_30546568263</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxKSJ3Ys_ECzovjzDq6amTU3Shbe3iAdwNQMzE5JwIVZZkXM-I2kIDWOMqzWXUiTkVDpr9JseI3qIxnW0dp6W4DG67NxH04Kl38dgoKajl-j0A0I0elTQT7Q39He6hxbDgkxrsAHTH-dkudteN4es9-41YIhV4wbfjakSTOZKqoIr8d_1AUtVPXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054656826</pqid></control><display><type>article</type><title>Policy Iteration for Pareto-Optimal Policies in Stochastic Stackelberg Games</title><source>Free E- Journals</source><creator>Kudo, Mikoto ; Akimoto, Yohei</creator><creatorcontrib>Kudo, Mikoto ; Akimoto, Yohei</creatorcontrib><description>In general-sum stochastic games, a stationary Stackelberg equilibrium (SSE) does not always exist, in which the leader maximizes leader's return for all the initial states when the follower takes the best response against the leader's policy. Existing methods of determining the SSEs require strong assumptions to guarantee the convergence and the coincidence of the limit with the SSE. Moreover, our analysis suggests that the performance at the fixed points of these methods is not reasonable when they are not SSEs. Herein, we introduced the concept of Pareto-optimality as a reasonable alternative to SSEs. We derive the policy improvement theorem for stochastic games with the best-response follower and propose an iterative algorithm to determine the Pareto-optimal policies based on it. Monotone improvement and convergence of the proposed approach are proved, and its convergence to SSEs is proved in a special case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Game theory ; Games ; Iterative algorithms ; Optimization ; Pareto optimum ; Policies</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Kudo, Mikoto</creatorcontrib><creatorcontrib>Akimoto, Yohei</creatorcontrib><title>Policy Iteration for Pareto-Optimal Policies in Stochastic Stackelberg Games</title><title>arXiv.org</title><description>In general-sum stochastic games, a stationary Stackelberg equilibrium (SSE) does not always exist, in which the leader maximizes leader's return for all the initial states when the follower takes the best response against the leader's policy. Existing methods of determining the SSEs require strong assumptions to guarantee the convergence and the coincidence of the limit with the SSE. Moreover, our analysis suggests that the performance at the fixed points of these methods is not reasonable when they are not SSEs. Herein, we introduced the concept of Pareto-optimality as a reasonable alternative to SSEs. We derive the policy improvement theorem for stochastic games with the best-response follower and propose an iterative algorithm to determine the Pareto-optimal policies based on it. Monotone improvement and convergence of the proposed approach are proved, and its convergence to SSEs is proved in a special case.</description><subject>Convergence</subject><subject>Game theory</subject><subject>Games</subject><subject>Iterative algorithms</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Policies</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxKSJ3Ys_ECzovjzDq6amTU3Shbe3iAdwNQMzE5JwIVZZkXM-I2kIDWOMqzWXUiTkVDpr9JseI3qIxnW0dp6W4DG67NxH04Kl38dgoKajl-j0A0I0elTQT7Q39He6hxbDgkxrsAHTH-dkudteN4es9-41YIhV4wbfjakSTOZKqoIr8d_1AUtVPXc</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>Kudo, Mikoto</creator><creator>Akimoto, Yohei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240507</creationdate><title>Policy Iteration for Pareto-Optimal Policies in Stochastic Stackelberg Games</title><author>Kudo, Mikoto ; Akimoto, Yohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30546568263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Game theory</topic><topic>Games</topic><topic>Iterative algorithms</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Policies</topic><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Mikoto</creatorcontrib><creatorcontrib>Akimoto, Yohei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Mikoto</au><au>Akimoto, Yohei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Policy Iteration for Pareto-Optimal Policies in Stochastic Stackelberg Games</atitle><jtitle>arXiv.org</jtitle><date>2024-05-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In general-sum stochastic games, a stationary Stackelberg equilibrium (SSE) does not always exist, in which the leader maximizes leader's return for all the initial states when the follower takes the best response against the leader's policy. Existing methods of determining the SSEs require strong assumptions to guarantee the convergence and the coincidence of the limit with the SSE. Moreover, our analysis suggests that the performance at the fixed points of these methods is not reasonable when they are not SSEs. Herein, we introduced the concept of Pareto-optimality as a reasonable alternative to SSEs. We derive the policy improvement theorem for stochastic games with the best-response follower and propose an iterative algorithm to determine the Pareto-optimal policies based on it. Monotone improvement and convergence of the proposed approach are proved, and its convergence to SSEs is proved in a special case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3054656826 |
source | Free E- Journals |
subjects | Convergence Game theory Games Iterative algorithms Optimization Pareto optimum Policies |
title | Policy Iteration for Pareto-Optimal Policies in Stochastic Stackelberg Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Policy%20Iteration%20for%20Pareto-Optimal%20Policies%20in%20Stochastic%20Stackelberg%20Games&rft.jtitle=arXiv.org&rft.au=Kudo,%20Mikoto&rft.date=2024-05-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3054656826%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054656826&rft_id=info:pmid/&rfr_iscdi=true |