Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite

Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-05, Vol.59 (19), p.8298-8317
Hauptverfasser: Pei, Tianrui, Sun, Dawei, Wang, Yali, Wang, Jianfeng, Cui, Suping, Li, Hongxuan, Meng, Wanyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8317
container_issue 19
container_start_page 8298
container_title Journal of materials science
container_volume 59
creator Pei, Tianrui
Sun, Dawei
Wang, Yali
Wang, Jianfeng
Cui, Suping
Li, Hongxuan
Meng, Wanyou
description Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å 2 , and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results.
doi_str_mv 10.1007/s10853-024-09676-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054649261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054649261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cf599d6bc0c4b6736b4ecf3e442b1d4a933f08b2504ea67bfa84942b6d4e97c53</originalsourceid><addsrcrecordid>eNp9kDFOxDAQRS0EEsvCBagi0UARGNsTJylXKxaQQDRAaznOhM0qmwTbKei4AzfkJGQJEh3VL-b_PzOPsVMOlxwgvfIcskTGIDCGXKUqxj0240kqY8xA7rMZgBCxQMUP2ZH3GwBIUsFn7OWha8gOjXGRr7ejhrpro66KwpoiH9xgw-AoMm0ZbcmuTVtb00S963pyoSa_sy6a8xVdfH18Ugiubl_rQMfsoDKNp5NfnbPn1fXT8ja-f7y5Wy7uYys5hthWSZ6XqrBgsVCpVAWSrSQhioKXaHIpK8gKkQCSUWlRmQzzcaZKpDy1iZyzs6l3vOhtIB_0phtcO67UEhJUmAvFR5eYXNZ13juqdO_qrXHvmoPe8dMTPz3y0z_8NI4hOYV8v3uK3F_1P6lvtGd0qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054649261</pqid></control><display><type>article</type><title>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</title><source>Springer Nature - Complete Springer Journals</source><creator>Pei, Tianrui ; Sun, Dawei ; Wang, Yali ; Wang, Jianfeng ; Cui, Suping ; Li, Hongxuan ; Meng, Wanyou</creator><creatorcontrib>Pei, Tianrui ; Sun, Dawei ; Wang, Yali ; Wang, Jianfeng ; Cui, Suping ; Li, Hongxuan ; Meng, Wanyou</creatorcontrib><description>Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å 2 , and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09676-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compressive strength ; Computation &amp; Theory ; Crystallography and Scattering Methods ; Density ; Diffusion rate ; Distribution functions ; Ettringite ; Hydrogen bonds ; Iron ; Marine engineering ; Materials Science ; Mechanical properties ; Molecular structure ; Nanoindentation ; Polymer Sciences ; Radial distribution ; Simulation ; Solid Mechanics ; Time correlation functions</subject><ispartof>Journal of materials science, 2024-05, Vol.59 (19), p.8298-8317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cf599d6bc0c4b6736b4ecf3e442b1d4a933f08b2504ea67bfa84942b6d4e97c53</cites><orcidid>0000-0002-3244-9596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09676-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09676-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Pei, Tianrui</creatorcontrib><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Cui, Suping</creatorcontrib><creatorcontrib>Li, Hongxuan</creatorcontrib><creatorcontrib>Meng, Wanyou</creatorcontrib><title>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å 2 , and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compressive strength</subject><subject>Computation &amp; Theory</subject><subject>Crystallography and Scattering Methods</subject><subject>Density</subject><subject>Diffusion rate</subject><subject>Distribution functions</subject><subject>Ettringite</subject><subject>Hydrogen bonds</subject><subject>Iron</subject><subject>Marine engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Molecular structure</subject><subject>Nanoindentation</subject><subject>Polymer Sciences</subject><subject>Radial distribution</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Time correlation functions</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFOxDAQRS0EEsvCBagi0UARGNsTJylXKxaQQDRAaznOhM0qmwTbKei4AzfkJGQJEh3VL-b_PzOPsVMOlxwgvfIcskTGIDCGXKUqxj0240kqY8xA7rMZgBCxQMUP2ZH3GwBIUsFn7OWha8gOjXGRr7ejhrpro66KwpoiH9xgw-AoMm0ZbcmuTVtb00S963pyoSa_sy6a8xVdfH18Ugiubl_rQMfsoDKNp5NfnbPn1fXT8ja-f7y5Wy7uYys5hthWSZ6XqrBgsVCpVAWSrSQhioKXaHIpK8gKkQCSUWlRmQzzcaZKpDy1iZyzs6l3vOhtIB_0phtcO67UEhJUmAvFR5eYXNZ13juqdO_qrXHvmoPe8dMTPz3y0z_8NI4hOYV8v3uK3F_1P6lvtGd0qQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Pei, Tianrui</creator><creator>Sun, Dawei</creator><creator>Wang, Yali</creator><creator>Wang, Jianfeng</creator><creator>Cui, Suping</creator><creator>Li, Hongxuan</creator><creator>Meng, Wanyou</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3244-9596</orcidid></search><sort><creationdate>20240501</creationdate><title>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</title><author>Pei, Tianrui ; Sun, Dawei ; Wang, Yali ; Wang, Jianfeng ; Cui, Suping ; Li, Hongxuan ; Meng, Wanyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cf599d6bc0c4b6736b4ecf3e442b1d4a933f08b2504ea67bfa84942b6d4e97c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compressive strength</topic><topic>Computation &amp; Theory</topic><topic>Crystallography and Scattering Methods</topic><topic>Density</topic><topic>Diffusion rate</topic><topic>Distribution functions</topic><topic>Ettringite</topic><topic>Hydrogen bonds</topic><topic>Iron</topic><topic>Marine engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Molecular structure</topic><topic>Nanoindentation</topic><topic>Polymer Sciences</topic><topic>Radial distribution</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Time correlation functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Tianrui</creatorcontrib><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Cui, Suping</creatorcontrib><creatorcontrib>Li, Hongxuan</creatorcontrib><creatorcontrib>Meng, Wanyou</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Tianrui</au><au>Sun, Dawei</au><au>Wang, Yali</au><au>Wang, Jianfeng</au><au>Cui, Suping</au><au>Li, Hongxuan</au><au>Meng, Wanyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>59</volume><issue>19</issue><spage>8298</spage><epage>8317</epage><pages>8298-8317</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å 2 , and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09676-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3244-9596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-05, Vol.59 (19), p.8298-8317
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_3054649261
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compressive strength
Computation & Theory
Crystallography and Scattering Methods
Density
Diffusion rate
Distribution functions
Ettringite
Hydrogen bonds
Iron
Marine engineering
Materials Science
Mechanical properties
Molecular structure
Nanoindentation
Polymer Sciences
Radial distribution
Simulation
Solid Mechanics
Time correlation functions
title Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20simulation%20of%20the%20structure%20and%20mechanical%20properties%20of%20Al(Fe)%E2%80%93ettringite&rft.jtitle=Journal%20of%20materials%20science&rft.au=Pei,%20Tianrui&rft.date=2024-05-01&rft.volume=59&rft.issue=19&rft.spage=8298&rft.epage=8317&rft.pages=8298-8317&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09676-4&rft_dat=%3Cproquest_cross%3E3054649261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054649261&rft_id=info:pmid/&rfr_iscdi=true