Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite
Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing diff...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-05, Vol.59 (19), p.8298-8317 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8317 |
---|---|
container_issue | 19 |
container_start_page | 8298 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Pei, Tianrui Sun, Dawei Wang, Yali Wang, Jianfeng Cui, Suping Li, Hongxuan Meng, Wanyou |
description | Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å
2
, and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results. |
doi_str_mv | 10.1007/s10853-024-09676-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054649261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054649261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cf599d6bc0c4b6736b4ecf3e442b1d4a933f08b2504ea67bfa84942b6d4e97c53</originalsourceid><addsrcrecordid>eNp9kDFOxDAQRS0EEsvCBagi0UARGNsTJylXKxaQQDRAaznOhM0qmwTbKei4AzfkJGQJEh3VL-b_PzOPsVMOlxwgvfIcskTGIDCGXKUqxj0240kqY8xA7rMZgBCxQMUP2ZH3GwBIUsFn7OWha8gOjXGRr7ejhrpro66KwpoiH9xgw-AoMm0ZbcmuTVtb00S963pyoSa_sy6a8xVdfH18Ugiubl_rQMfsoDKNp5NfnbPn1fXT8ja-f7y5Wy7uYys5hthWSZ6XqrBgsVCpVAWSrSQhioKXaHIpK8gKkQCSUWlRmQzzcaZKpDy1iZyzs6l3vOhtIB_0phtcO67UEhJUmAvFR5eYXNZ13juqdO_qrXHvmoPe8dMTPz3y0z_8NI4hOYV8v3uK3F_1P6lvtGd0qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054649261</pqid></control><display><type>article</type><title>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</title><source>Springer Nature - Complete Springer Journals</source><creator>Pei, Tianrui ; Sun, Dawei ; Wang, Yali ; Wang, Jianfeng ; Cui, Suping ; Li, Hongxuan ; Meng, Wanyou</creator><creatorcontrib>Pei, Tianrui ; Sun, Dawei ; Wang, Yali ; Wang, Jianfeng ; Cui, Suping ; Li, Hongxuan ; Meng, Wanyou</creatorcontrib><description>Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å
2
, and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09676-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compressive strength ; Computation & Theory ; Crystallography and Scattering Methods ; Density ; Diffusion rate ; Distribution functions ; Ettringite ; Hydrogen bonds ; Iron ; Marine engineering ; Materials Science ; Mechanical properties ; Molecular structure ; Nanoindentation ; Polymer Sciences ; Radial distribution ; Simulation ; Solid Mechanics ; Time correlation functions</subject><ispartof>Journal of materials science, 2024-05, Vol.59 (19), p.8298-8317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cf599d6bc0c4b6736b4ecf3e442b1d4a933f08b2504ea67bfa84942b6d4e97c53</cites><orcidid>0000-0002-3244-9596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09676-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09676-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Pei, Tianrui</creatorcontrib><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Cui, Suping</creatorcontrib><creatorcontrib>Li, Hongxuan</creatorcontrib><creatorcontrib>Meng, Wanyou</creatorcontrib><title>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å
2
, and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compressive strength</subject><subject>Computation & Theory</subject><subject>Crystallography and Scattering Methods</subject><subject>Density</subject><subject>Diffusion rate</subject><subject>Distribution functions</subject><subject>Ettringite</subject><subject>Hydrogen bonds</subject><subject>Iron</subject><subject>Marine engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Molecular structure</subject><subject>Nanoindentation</subject><subject>Polymer Sciences</subject><subject>Radial distribution</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Time correlation functions</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFOxDAQRS0EEsvCBagi0UARGNsTJylXKxaQQDRAaznOhM0qmwTbKei4AzfkJGQJEh3VL-b_PzOPsVMOlxwgvfIcskTGIDCGXKUqxj0240kqY8xA7rMZgBCxQMUP2ZH3GwBIUsFn7OWha8gOjXGRr7ejhrpro66KwpoiH9xgw-AoMm0ZbcmuTVtb00S963pyoSa_sy6a8xVdfH18Ugiubl_rQMfsoDKNp5NfnbPn1fXT8ja-f7y5Wy7uYys5hthWSZ6XqrBgsVCpVAWSrSQhioKXaHIpK8gKkQCSUWlRmQzzcaZKpDy1iZyzs6l3vOhtIB_0phtcO67UEhJUmAvFR5eYXNZ13juqdO_qrXHvmoPe8dMTPz3y0z_8NI4hOYV8v3uK3F_1P6lvtGd0qQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Pei, Tianrui</creator><creator>Sun, Dawei</creator><creator>Wang, Yali</creator><creator>Wang, Jianfeng</creator><creator>Cui, Suping</creator><creator>Li, Hongxuan</creator><creator>Meng, Wanyou</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3244-9596</orcidid></search><sort><creationdate>20240501</creationdate><title>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</title><author>Pei, Tianrui ; Sun, Dawei ; Wang, Yali ; Wang, Jianfeng ; Cui, Suping ; Li, Hongxuan ; Meng, Wanyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cf599d6bc0c4b6736b4ecf3e442b1d4a933f08b2504ea67bfa84942b6d4e97c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compressive strength</topic><topic>Computation & Theory</topic><topic>Crystallography and Scattering Methods</topic><topic>Density</topic><topic>Diffusion rate</topic><topic>Distribution functions</topic><topic>Ettringite</topic><topic>Hydrogen bonds</topic><topic>Iron</topic><topic>Marine engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Molecular structure</topic><topic>Nanoindentation</topic><topic>Polymer Sciences</topic><topic>Radial distribution</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Time correlation functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Tianrui</creatorcontrib><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Cui, Suping</creatorcontrib><creatorcontrib>Li, Hongxuan</creatorcontrib><creatorcontrib>Meng, Wanyou</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Tianrui</au><au>Sun, Dawei</au><au>Wang, Yali</au><au>Wang, Jianfeng</au><au>Cui, Suping</au><au>Li, Hongxuan</au><au>Meng, Wanyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>59</volume><issue>19</issue><spage>8298</spage><epage>8317</epage><pages>8298-8317</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ferroaluminate cement is widely used in marine engineering applications owing to the remarkable durability and strength of its main hydrate, Al(Fe)–ettringite. The structure and performance of Al(Fe)–ettringite still require extensive exploration. An Al(Fe)–ettringite molecular model containing different Fe contents (0%, 25%, 50%, and 75%) was developed via Materials Studio. Radial distribution functions, time-correlated functions, and mean square displacement were used to analyze the structure of Al(Fe)–ettringite, after which Al(Fe)– ettringite was prepared using a coprecipitation method. The hydration of Al(Fe)–ye’elimite, the nanoindentation testing, and compressive strength of four ettringite types were assessed to facilitate a comparison with the simulation results. Increasing the Fe content resulted in increased lattice size and density. Fe atoms mainly reacted with Ohs atoms to form Fe–Ohs bonds, resulting in an increased Fe–Ohs bond length, with the Fe atom density resulting in volume expansion and increased density in Al(Fe)–ettringite. At 25% Fe content, the number of Hw–Ow hydrogen bonds in Al(Fe)–ettringite was 1166.14, the MSD value was 1.53 Å
2
, and the water molecules diffused the fastest. The improved macromechanical properties obtained by adding Fe atoms demonstrate that Fe atom substitution can enhance the ettringite structure. The experimental results validated the simulation results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09676-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3244-9596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-05, Vol.59 (19), p.8298-8317 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_3054649261 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Compressive strength Computation & Theory Crystallography and Scattering Methods Density Diffusion rate Distribution functions Ettringite Hydrogen bonds Iron Marine engineering Materials Science Mechanical properties Molecular structure Nanoindentation Polymer Sciences Radial distribution Simulation Solid Mechanics Time correlation functions |
title | Molecular simulation of the structure and mechanical properties of Al(Fe)–ettringite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20simulation%20of%20the%20structure%20and%20mechanical%20properties%20of%20Al(Fe)%E2%80%93ettringite&rft.jtitle=Journal%20of%20materials%20science&rft.au=Pei,%20Tianrui&rft.date=2024-05-01&rft.volume=59&rft.issue=19&rft.spage=8298&rft.epage=8317&rft.pages=8298-8317&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09676-4&rft_dat=%3Cproquest_cross%3E3054649261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054649261&rft_id=info:pmid/&rfr_iscdi=true |