On a class of quasilinear Schrödinger equations with superlinear terms

In this paper, we consider a class of quasilinear Schrödinger equations arising from a model of a self-trapped electrons in quadratic or hexagonal lattices. By variational methods, we prove that this problem admits a positive solution for any positive parameter.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2024-05, Vol.65 (5)
Hauptverfasser: Cheng, Yongkuan, Shen, Yaotian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of mathematical physics
container_volume 65
creator Cheng, Yongkuan
Shen, Yaotian
description In this paper, we consider a class of quasilinear Schrödinger equations arising from a model of a self-trapped electrons in quadratic or hexagonal lattices. By variational methods, we prove that this problem admits a positive solution for any positive parameter.
doi_str_mv 10.1063/5.0158981
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054569451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054569451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-a717d8d75e3603e8f6dcdcc4699bcaa5ddb201702a8dbf18317195fc957372993</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTcIeFLYOpNsNslRilZB6EE9hzTJ2pR2t012EV_MF_DFXG3PnuYwH_8wPyGXCBOEit-KCaBQWuERGSEoXchKqGMyAmCsYKVSp-Qs5xUAoirLEZnNG2qpW9ucaVvTXW9zXMcm2ERf3DJ9f_nYvIdEw7DpYttk-hG7Jc39NqSD60La5HNyUtt1DheHOSZvD_ev08fieT57mt49F44J1hVWovTKSxF4BTyouvLOO1dWWi-ctcL7BQOUwKzyixoVR4la1E4LySXTmo_J1T53m9pdH3JnVm2fmuGk4SBKUelS4KCu98qlNucUarNNcWPTp0Ewvz0ZYQ49DfZmb7OL3d-P_-AfJq1n7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054569451</pqid></control><display><type>article</type><title>On a class of quasilinear Schrödinger equations with superlinear terms</title><source>AIP Journals Complete</source><creator>Cheng, Yongkuan ; Shen, Yaotian</creator><creatorcontrib>Cheng, Yongkuan ; Shen, Yaotian</creatorcontrib><description>In this paper, we consider a class of quasilinear Schrödinger equations arising from a model of a self-trapped electrons in quadratic or hexagonal lattices. By variational methods, we prove that this problem admits a positive solution for any positive parameter.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0158981</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Schrodinger equation ; Variational methods</subject><ispartof>Journal of mathematical physics, 2024-05, Vol.65 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-a717d8d75e3603e8f6dcdcc4699bcaa5ddb201702a8dbf18317195fc957372993</cites><orcidid>0000-0002-3269-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0158981$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Cheng, Yongkuan</creatorcontrib><creatorcontrib>Shen, Yaotian</creatorcontrib><title>On a class of quasilinear Schrödinger equations with superlinear terms</title><title>Journal of mathematical physics</title><description>In this paper, we consider a class of quasilinear Schrödinger equations arising from a model of a self-trapped electrons in quadratic or hexagonal lattices. By variational methods, we prove that this problem admits a positive solution for any positive parameter.</description><subject>Schrodinger equation</subject><subject>Variational methods</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTcIeFLYOpNsNslRilZB6EE9hzTJ2pR2t012EV_MF_DFXG3PnuYwH_8wPyGXCBOEit-KCaBQWuERGSEoXchKqGMyAmCsYKVSp-Qs5xUAoirLEZnNG2qpW9ucaVvTXW9zXMcm2ERf3DJ9f_nYvIdEw7DpYttk-hG7Jc39NqSD60La5HNyUtt1DheHOSZvD_ev08fieT57mt49F44J1hVWovTKSxF4BTyouvLOO1dWWi-ctcL7BQOUwKzyixoVR4la1E4LySXTmo_J1T53m9pdH3JnVm2fmuGk4SBKUelS4KCu98qlNucUarNNcWPTp0Ewvz0ZYQ49DfZmb7OL3d-P_-AfJq1n7g</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Cheng, Yongkuan</creator><creator>Shen, Yaotian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3269-5332</orcidid></search><sort><creationdate>20240501</creationdate><title>On a class of quasilinear Schrödinger equations with superlinear terms</title><author>Cheng, Yongkuan ; Shen, Yaotian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-a717d8d75e3603e8f6dcdcc4699bcaa5ddb201702a8dbf18317195fc957372993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Schrodinger equation</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yongkuan</creatorcontrib><creatorcontrib>Shen, Yaotian</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yongkuan</au><au>Shen, Yaotian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of quasilinear Schrödinger equations with superlinear terms</atitle><jtitle>Journal of mathematical physics</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>65</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we consider a class of quasilinear Schrödinger equations arising from a model of a self-trapped electrons in quadratic or hexagonal lattices. By variational methods, we prove that this problem admits a positive solution for any positive parameter.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0158981</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3269-5332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2024-05, Vol.65 (5)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_3054569451
source AIP Journals Complete
subjects Schrodinger equation
Variational methods
title On a class of quasilinear Schrödinger equations with superlinear terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20quasilinear%20Schr%C3%B6dinger%20equations%20with%20superlinear%20terms&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Cheng,%20Yongkuan&rft.date=2024-05-01&rft.volume=65&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0158981&rft_dat=%3Cproquest_cross%3E3054569451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054569451&rft_id=info:pmid/&rfr_iscdi=true