Oxygen vacancy-induced efficient hydrogen spillover in Ni17W3/WO3−x/MoO3−x for a superior pH-universal hydrogen evolution reaction

Searching for a stable and efficient electrocatalyst for the hydrogen evolution reaction is still challenging, especially under a wider pH operation condition. In this study, a multicomponent Ni17W3/MoO3−x/WO3−x catalyst was designed and synthesized, in which the unique hierarchical structure of ent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-05, Vol.12 (19), p.11563-11570
Hauptverfasser: Sun, Yiqing, Bao, Yiwei, Yin, Di, Bu, Xiuming, Zhang, Yuxuan, Kaihang Yue, Xiaoshuang Qi, Cai, Ziyan, Li, Yongqiang, Hu, Xiulan, Ho, Johnny C, Wang, Xianying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11570
container_issue 19
container_start_page 11563
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Sun, Yiqing
Bao, Yiwei
Yin, Di
Bu, Xiuming
Zhang, Yuxuan
Kaihang Yue
Xiaoshuang Qi
Cai, Ziyan
Li, Yongqiang
Hu, Xiulan
Ho, Johnny C
Wang, Xianying
description Searching for a stable and efficient electrocatalyst for the hydrogen evolution reaction is still challenging, especially under a wider pH operation condition. In this study, a multicomponent Ni17W3/MoO3−x/WO3−x catalyst was designed and synthesized, in which the unique hierarchical structure of entangled nanorods confined in a polyhedral framework ensures the maximum utilization of active sites. Significantly, electrochemical performance can be regulated by adjusting the oxygen vacancy concentration of the metal support. Combined with various characterization techniques, we discovered that abundant oxygen vacancies in the MoO3−x/WO3−x support not only significantly enhanced the hydrogen insertion/extraction kinetics in the metal oxide but also increased the hydration capacity, resulting in an efficient hydrogen adsorption/transfer/desorption kinetics on the Ni17W3/MoO3−x/WO3−x surface and interface. As a result, the fabricated electrocatalyst exhibits an ultralow overpotential of 16, 42, and 14 mV at 10 mA cm−2 in alkaline, neutral, and acid electrolytes, respectively. Our work proves the important role of metal oxide supports in the hydrogen spillover process.
doi_str_mv 10.1039/d4ta00729h
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3054426685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054426685</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4f42ae81182df76b62a09fdf1dec65874443f5c159c9a76c9036267ced27019c3</originalsourceid><addsrcrecordid>eNpFj8tKAzEUhoMoWGo3PkHA9djcJpelFLVCtRulyxJzsSlDMk5mSucFxLWP6JM4paJnc77F_3-HA8AlRtcYUTW1rNUICaI2J2BEUIkKwRQ__WMpz8Ek5y0aRiLElRqBj-W-f3MR7rTR0fRFiLYzzkLnfTDBxRZuetukQyTXoarSzjUwRPgUsFjR6WpJvz-_9tPHdAToUwM1zF3tmjBgPS-6GIZO1tW_ye1S1bUhRdg4bQ5wAc68rrKb_O4xeLm7fZ7Ni8Xy_mF2syhqglVbMM-IdhJjSawX_JUTjZS3HltneCkFY4z60uBSGaUFNwpRTrgYHiICYWXoGFwdvXWT3juX2_U2dU0cTq4pKhkjnMuS_gD9CGaL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054426685</pqid></control><display><type>article</type><title>Oxygen vacancy-induced efficient hydrogen spillover in Ni17W3/WO3−x/MoO3−x for a superior pH-universal hydrogen evolution reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sun, Yiqing ; Bao, Yiwei ; Yin, Di ; Bu, Xiuming ; Zhang, Yuxuan ; Kaihang Yue ; Xiaoshuang Qi ; Cai, Ziyan ; Li, Yongqiang ; Hu, Xiulan ; Ho, Johnny C ; Wang, Xianying</creator><creatorcontrib>Sun, Yiqing ; Bao, Yiwei ; Yin, Di ; Bu, Xiuming ; Zhang, Yuxuan ; Kaihang Yue ; Xiaoshuang Qi ; Cai, Ziyan ; Li, Yongqiang ; Hu, Xiulan ; Ho, Johnny C ; Wang, Xianying</creatorcontrib><description>Searching for a stable and efficient electrocatalyst for the hydrogen evolution reaction is still challenging, especially under a wider pH operation condition. In this study, a multicomponent Ni17W3/MoO3−x/WO3−x catalyst was designed and synthesized, in which the unique hierarchical structure of entangled nanorods confined in a polyhedral framework ensures the maximum utilization of active sites. Significantly, electrochemical performance can be regulated by adjusting the oxygen vacancy concentration of the metal support. Combined with various characterization techniques, we discovered that abundant oxygen vacancies in the MoO3−x/WO3−x support not only significantly enhanced the hydrogen insertion/extraction kinetics in the metal oxide but also increased the hydration capacity, resulting in an efficient hydrogen adsorption/transfer/desorption kinetics on the Ni17W3/MoO3−x/WO3−x surface and interface. As a result, the fabricated electrocatalyst exhibits an ultralow overpotential of 16, 42, and 14 mV at 10 mA cm−2 in alkaline, neutral, and acid electrolytes, respectively. Our work proves the important role of metal oxide supports in the hydrogen spillover process.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta00729h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysis ; Catalysts ; Chemical synthesis ; Electrocatalysts ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Evolution ; Hydrogen ; Hydrogen evolution reactions ; Kinetics ; Metal concentrations ; Metal oxides ; Molybdenum trioxide ; Nanorods ; Oxygen</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-05, Vol.12 (19), p.11563-11570</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, Yiqing</creatorcontrib><creatorcontrib>Bao, Yiwei</creatorcontrib><creatorcontrib>Yin, Di</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Kaihang Yue</creatorcontrib><creatorcontrib>Xiaoshuang Qi</creatorcontrib><creatorcontrib>Cai, Ziyan</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><creatorcontrib>Hu, Xiulan</creatorcontrib><creatorcontrib>Ho, Johnny C</creatorcontrib><creatorcontrib>Wang, Xianying</creatorcontrib><title>Oxygen vacancy-induced efficient hydrogen spillover in Ni17W3/WO3−x/MoO3−x for a superior pH-universal hydrogen evolution reaction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Searching for a stable and efficient electrocatalyst for the hydrogen evolution reaction is still challenging, especially under a wider pH operation condition. In this study, a multicomponent Ni17W3/MoO3−x/WO3−x catalyst was designed and synthesized, in which the unique hierarchical structure of entangled nanorods confined in a polyhedral framework ensures the maximum utilization of active sites. Significantly, electrochemical performance can be regulated by adjusting the oxygen vacancy concentration of the metal support. Combined with various characterization techniques, we discovered that abundant oxygen vacancies in the MoO3−x/WO3−x support not only significantly enhanced the hydrogen insertion/extraction kinetics in the metal oxide but also increased the hydration capacity, resulting in an efficient hydrogen adsorption/transfer/desorption kinetics on the Ni17W3/MoO3−x/WO3−x surface and interface. As a result, the fabricated electrocatalyst exhibits an ultralow overpotential of 16, 42, and 14 mV at 10 mA cm−2 in alkaline, neutral, and acid electrolytes, respectively. Our work proves the important role of metal oxide supports in the hydrogen spillover process.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Kinetics</subject><subject>Metal concentrations</subject><subject>Metal oxides</subject><subject>Molybdenum trioxide</subject><subject>Nanorods</subject><subject>Oxygen</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFj8tKAzEUhoMoWGo3PkHA9djcJpelFLVCtRulyxJzsSlDMk5mSucFxLWP6JM4paJnc77F_3-HA8AlRtcYUTW1rNUICaI2J2BEUIkKwRQ__WMpz8Ek5y0aRiLElRqBj-W-f3MR7rTR0fRFiLYzzkLnfTDBxRZuetukQyTXoarSzjUwRPgUsFjR6WpJvz-_9tPHdAToUwM1zF3tmjBgPS-6GIZO1tW_ye1S1bUhRdg4bQ5wAc68rrKb_O4xeLm7fZ7Ni8Xy_mF2syhqglVbMM-IdhJjSawX_JUTjZS3HltneCkFY4z60uBSGaUFNwpRTrgYHiICYWXoGFwdvXWT3juX2_U2dU0cTq4pKhkjnMuS_gD9CGaL</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Sun, Yiqing</creator><creator>Bao, Yiwei</creator><creator>Yin, Di</creator><creator>Bu, Xiuming</creator><creator>Zhang, Yuxuan</creator><creator>Kaihang Yue</creator><creator>Xiaoshuang Qi</creator><creator>Cai, Ziyan</creator><creator>Li, Yongqiang</creator><creator>Hu, Xiulan</creator><creator>Ho, Johnny C</creator><creator>Wang, Xianying</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240514</creationdate><title>Oxygen vacancy-induced efficient hydrogen spillover in Ni17W3/WO3−x/MoO3−x for a superior pH-universal hydrogen evolution reaction</title><author>Sun, Yiqing ; Bao, Yiwei ; Yin, Di ; Bu, Xiuming ; Zhang, Yuxuan ; Kaihang Yue ; Xiaoshuang Qi ; Cai, Ziyan ; Li, Yongqiang ; Hu, Xiulan ; Ho, Johnny C ; Wang, Xianying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4f42ae81182df76b62a09fdf1dec65874443f5c159c9a76c9036267ced27019c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Kinetics</topic><topic>Metal concentrations</topic><topic>Metal oxides</topic><topic>Molybdenum trioxide</topic><topic>Nanorods</topic><topic>Oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yiqing</creatorcontrib><creatorcontrib>Bao, Yiwei</creatorcontrib><creatorcontrib>Yin, Di</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Kaihang Yue</creatorcontrib><creatorcontrib>Xiaoshuang Qi</creatorcontrib><creatorcontrib>Cai, Ziyan</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><creatorcontrib>Hu, Xiulan</creatorcontrib><creatorcontrib>Ho, Johnny C</creatorcontrib><creatorcontrib>Wang, Xianying</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yiqing</au><au>Bao, Yiwei</au><au>Yin, Di</au><au>Bu, Xiuming</au><au>Zhang, Yuxuan</au><au>Kaihang Yue</au><au>Xiaoshuang Qi</au><au>Cai, Ziyan</au><au>Li, Yongqiang</au><au>Hu, Xiulan</au><au>Ho, Johnny C</au><au>Wang, Xianying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancy-induced efficient hydrogen spillover in Ni17W3/WO3−x/MoO3−x for a superior pH-universal hydrogen evolution reaction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-05-14</date><risdate>2024</risdate><volume>12</volume><issue>19</issue><spage>11563</spage><epage>11570</epage><pages>11563-11570</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Searching for a stable and efficient electrocatalyst for the hydrogen evolution reaction is still challenging, especially under a wider pH operation condition. In this study, a multicomponent Ni17W3/MoO3−x/WO3−x catalyst was designed and synthesized, in which the unique hierarchical structure of entangled nanorods confined in a polyhedral framework ensures the maximum utilization of active sites. Significantly, electrochemical performance can be regulated by adjusting the oxygen vacancy concentration of the metal support. Combined with various characterization techniques, we discovered that abundant oxygen vacancies in the MoO3−x/WO3−x support not only significantly enhanced the hydrogen insertion/extraction kinetics in the metal oxide but also increased the hydration capacity, resulting in an efficient hydrogen adsorption/transfer/desorption kinetics on the Ni17W3/MoO3−x/WO3−x surface and interface. As a result, the fabricated electrocatalyst exhibits an ultralow overpotential of 16, 42, and 14 mV at 10 mA cm−2 in alkaline, neutral, and acid electrolytes, respectively. Our work proves the important role of metal oxide supports in the hydrogen spillover process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta00729h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-05, Vol.12 (19), p.11563-11570
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3054426685
source Royal Society Of Chemistry Journals 2008-
subjects Catalysis
Catalysts
Chemical synthesis
Electrocatalysts
Electrochemical analysis
Electrochemistry
Electrolytes
Evolution
Hydrogen
Hydrogen evolution reactions
Kinetics
Metal concentrations
Metal oxides
Molybdenum trioxide
Nanorods
Oxygen
title Oxygen vacancy-induced efficient hydrogen spillover in Ni17W3/WO3−x/MoO3−x for a superior pH-universal hydrogen evolution reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancy-induced%20efficient%20hydrogen%20spillover%20in%20Ni17W3/WO3%E2%88%92x/MoO3%E2%88%92x%20for%20a%20superior%20pH-universal%20hydrogen%20evolution%20reaction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sun,%20Yiqing&rft.date=2024-05-14&rft.volume=12&rft.issue=19&rft.spage=11563&rft.epage=11570&rft.pages=11563-11570&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta00729h&rft_dat=%3Cproquest%3E3054426685%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054426685&rft_id=info:pmid/&rfr_iscdi=true