Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics

We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of high performance computing applications 2024-05, Vol.38 (3), p.154-174
Hauptverfasser: Melander, Anders, Strøm, Emil, Pind, Finnur, Engsig-Karup, Allan P, Jeong, Cheol-Ho, Warburton, Tim, Chalmers, Noel, Hesthaven, Jan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 3
container_start_page 154
container_title The international journal of high performance computing applications
container_volume 38
creator Melander, Anders
Strøm, Emil
Pind, Finnur
Engsig-Karup, Allan P
Jeong, Cheol-Ho
Warburton, Tim
Chalmers, Noel
Hesthaven, Jan S
description We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations.
doi_str_mv 10.1177/10943420231208948
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054382589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10943420231208948</sage_id><sourcerecordid>3054382589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8bZI9StEqVLzoeYm7E03NbmqSFfrvTangQTwMMzDPMwMvQpeULChV6pqSRnDBCOOUEd0IfYRmVAlaMS3kcZnLvtoDp-gspQ0hRApez5B5NCm5L_A7vDXReA8ej6E3HvcudWHMbgxTwivjIX64EVs3ugwYPAwwZjxAfg89Tm6YvMkhYlsqhjBg0xUvuy6doxNrfIKLnz5HL3e3z8v7av20eljerKuO13WutGAGXiUXghMhpKYKZKd4A7wXBhQ0VBJiodFK1cZqKYVVwDUwymoNYPkcXR3ubmP4nCDldhOmOJaXLSe14LpwTaHogepiSCmCbbfRDSbuWkrafZLtnySLszg4ybzB79X_hW98TXPS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054382589</pqid></control><display><type>article</type><title>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</title><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Melander, Anders ; Strøm, Emil ; Pind, Finnur ; Engsig-Karup, Allan P ; Jeong, Cheol-Ho ; Warburton, Tim ; Chalmers, Noel ; Hesthaven, Jan S</creator><creatorcontrib>Melander, Anders ; Strøm, Emil ; Pind, Finnur ; Engsig-Karup, Allan P ; Jeong, Cheol-Ho ; Warburton, Tim ; Chalmers, Noel ; Hesthaven, Jan S</creatorcontrib><description>We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/10943420231208948</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acoustic waves ; Acoustics ; Architectural acoustics ; Boundary conditions ; Computer simulation ; Computing time ; Finite element analysis ; Finite element method ; Frequency ranges ; Galerkin method ; High performance computing ; Solvers ; Wave equations</subject><ispartof>The international journal of high performance computing applications, 2024-05, Vol.38 (3), p.154-174</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</citedby><cites>FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</cites><orcidid>0000-0003-3310-9638 ; 0000-0002-1293-7525 ; 0000-0002-9864-7317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10943420231208948$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10943420231208948$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Melander, Anders</creatorcontrib><creatorcontrib>Strøm, Emil</creatorcontrib><creatorcontrib>Pind, Finnur</creatorcontrib><creatorcontrib>Engsig-Karup, Allan P</creatorcontrib><creatorcontrib>Jeong, Cheol-Ho</creatorcontrib><creatorcontrib>Warburton, Tim</creatorcontrib><creatorcontrib>Chalmers, Noel</creatorcontrib><creatorcontrib>Hesthaven, Jan S</creatorcontrib><title>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</title><title>The international journal of high performance computing applications</title><description>We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Architectural acoustics</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Galerkin method</subject><subject>High performance computing</subject><subject>Solvers</subject><subject>Wave equations</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8bZI9StEqVLzoeYm7E03NbmqSFfrvTangQTwMMzDPMwMvQpeULChV6pqSRnDBCOOUEd0IfYRmVAlaMS3kcZnLvtoDp-gspQ0hRApez5B5NCm5L_A7vDXReA8ej6E3HvcudWHMbgxTwivjIX64EVs3ugwYPAwwZjxAfg89Tm6YvMkhYlsqhjBg0xUvuy6doxNrfIKLnz5HL3e3z8v7av20eljerKuO13WutGAGXiUXghMhpKYKZKd4A7wXBhQ0VBJiodFK1cZqKYVVwDUwymoNYPkcXR3ubmP4nCDldhOmOJaXLSe14LpwTaHogepiSCmCbbfRDSbuWkrafZLtnySLszg4ybzB79X_hW98TXPS</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Melander, Anders</creator><creator>Strøm, Emil</creator><creator>Pind, Finnur</creator><creator>Engsig-Karup, Allan P</creator><creator>Jeong, Cheol-Ho</creator><creator>Warburton, Tim</creator><creator>Chalmers, Noel</creator><creator>Hesthaven, Jan S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3310-9638</orcidid><orcidid>https://orcid.org/0000-0002-1293-7525</orcidid><orcidid>https://orcid.org/0000-0002-9864-7317</orcidid></search><sort><creationdate>202405</creationdate><title>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</title><author>Melander, Anders ; Strøm, Emil ; Pind, Finnur ; Engsig-Karup, Allan P ; Jeong, Cheol-Ho ; Warburton, Tim ; Chalmers, Noel ; Hesthaven, Jan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Architectural acoustics</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Galerkin method</topic><topic>High performance computing</topic><topic>Solvers</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melander, Anders</creatorcontrib><creatorcontrib>Strøm, Emil</creatorcontrib><creatorcontrib>Pind, Finnur</creatorcontrib><creatorcontrib>Engsig-Karup, Allan P</creatorcontrib><creatorcontrib>Jeong, Cheol-Ho</creatorcontrib><creatorcontrib>Warburton, Tim</creatorcontrib><creatorcontrib>Chalmers, Noel</creatorcontrib><creatorcontrib>Hesthaven, Jan S</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melander, Anders</au><au>Strøm, Emil</au><au>Pind, Finnur</au><au>Engsig-Karup, Allan P</au><au>Jeong, Cheol-Ho</au><au>Warburton, Tim</au><au>Chalmers, Noel</au><au>Hesthaven, Jan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2024-05</date><risdate>2024</risdate><volume>38</volume><issue>3</issue><spage>154</spage><epage>174</epage><pages>154-174</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10943420231208948</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3310-9638</orcidid><orcidid>https://orcid.org/0000-0002-1293-7525</orcidid><orcidid>https://orcid.org/0000-0002-9864-7317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-3420
ispartof The international journal of high performance computing applications, 2024-05, Vol.38 (3), p.154-174
issn 1094-3420
1741-2846
language eng
recordid cdi_proquest_journals_3054382589
source SAGE Complete; Alma/SFX Local Collection
subjects Acoustic waves
Acoustics
Architectural acoustics
Boundary conditions
Computer simulation
Computing time
Finite element analysis
Finite element method
Frequency ranges
Galerkin method
High performance computing
Solvers
Wave equations
title Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massively%20parallel%20nodal%20discontinous%20Galerkin%20finite%20element%20method%20simulator%20for%20room%20acoustics&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Melander,%20Anders&rft.date=2024-05&rft.volume=38&rft.issue=3&rft.spage=154&rft.epage=174&rft.pages=154-174&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/10943420231208948&rft_dat=%3Cproquest_cross%3E3054382589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054382589&rft_id=info:pmid/&rft_sage_id=10.1177_10943420231208948&rfr_iscdi=true