Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics
We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and freque...
Gespeichert in:
Veröffentlicht in: | The international journal of high performance computing applications 2024-05, Vol.38 (3), p.154-174 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 3 |
container_start_page | 154 |
container_title | The international journal of high performance computing applications |
container_volume | 38 |
creator | Melander, Anders Strøm, Emil Pind, Finnur Engsig-Karup, Allan P Jeong, Cheol-Ho Warburton, Tim Chalmers, Noel Hesthaven, Jan S |
description | We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations. |
doi_str_mv | 10.1177/10943420231208948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054382589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10943420231208948</sage_id><sourcerecordid>3054382589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8bZI9StEqVLzoeYm7E03NbmqSFfrvTangQTwMMzDPMwMvQpeULChV6pqSRnDBCOOUEd0IfYRmVAlaMS3kcZnLvtoDp-gspQ0hRApez5B5NCm5L_A7vDXReA8ej6E3HvcudWHMbgxTwivjIX64EVs3ugwYPAwwZjxAfg89Tm6YvMkhYlsqhjBg0xUvuy6doxNrfIKLnz5HL3e3z8v7av20eljerKuO13WutGAGXiUXghMhpKYKZKd4A7wXBhQ0VBJiodFK1cZqKYVVwDUwymoNYPkcXR3ubmP4nCDldhOmOJaXLSe14LpwTaHogepiSCmCbbfRDSbuWkrafZLtnySLszg4ybzB79X_hW98TXPS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054382589</pqid></control><display><type>article</type><title>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</title><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Melander, Anders ; Strøm, Emil ; Pind, Finnur ; Engsig-Karup, Allan P ; Jeong, Cheol-Ho ; Warburton, Tim ; Chalmers, Noel ; Hesthaven, Jan S</creator><creatorcontrib>Melander, Anders ; Strøm, Emil ; Pind, Finnur ; Engsig-Karup, Allan P ; Jeong, Cheol-Ho ; Warburton, Tim ; Chalmers, Noel ; Hesthaven, Jan S</creatorcontrib><description>We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/10943420231208948</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acoustic waves ; Acoustics ; Architectural acoustics ; Boundary conditions ; Computer simulation ; Computing time ; Finite element analysis ; Finite element method ; Frequency ranges ; Galerkin method ; High performance computing ; Solvers ; Wave equations</subject><ispartof>The international journal of high performance computing applications, 2024-05, Vol.38 (3), p.154-174</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</citedby><cites>FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</cites><orcidid>0000-0003-3310-9638 ; 0000-0002-1293-7525 ; 0000-0002-9864-7317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10943420231208948$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10943420231208948$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Melander, Anders</creatorcontrib><creatorcontrib>Strøm, Emil</creatorcontrib><creatorcontrib>Pind, Finnur</creatorcontrib><creatorcontrib>Engsig-Karup, Allan P</creatorcontrib><creatorcontrib>Jeong, Cheol-Ho</creatorcontrib><creatorcontrib>Warburton, Tim</creatorcontrib><creatorcontrib>Chalmers, Noel</creatorcontrib><creatorcontrib>Hesthaven, Jan S</creatorcontrib><title>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</title><title>The international journal of high performance computing applications</title><description>We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Architectural acoustics</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Galerkin method</subject><subject>High performance computing</subject><subject>Solvers</subject><subject>Wave equations</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8bZI9StEqVLzoeYm7E03NbmqSFfrvTangQTwMMzDPMwMvQpeULChV6pqSRnDBCOOUEd0IfYRmVAlaMS3kcZnLvtoDp-gspQ0hRApez5B5NCm5L_A7vDXReA8ej6E3HvcudWHMbgxTwivjIX64EVs3ugwYPAwwZjxAfg89Tm6YvMkhYlsqhjBg0xUvuy6doxNrfIKLnz5HL3e3z8v7av20eljerKuO13WutGAGXiUXghMhpKYKZKd4A7wXBhQ0VBJiodFK1cZqKYVVwDUwymoNYPkcXR3ubmP4nCDldhOmOJaXLSe14LpwTaHogepiSCmCbbfRDSbuWkrafZLtnySLszg4ybzB79X_hW98TXPS</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Melander, Anders</creator><creator>Strøm, Emil</creator><creator>Pind, Finnur</creator><creator>Engsig-Karup, Allan P</creator><creator>Jeong, Cheol-Ho</creator><creator>Warburton, Tim</creator><creator>Chalmers, Noel</creator><creator>Hesthaven, Jan S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3310-9638</orcidid><orcidid>https://orcid.org/0000-0002-1293-7525</orcidid><orcidid>https://orcid.org/0000-0002-9864-7317</orcidid></search><sort><creationdate>202405</creationdate><title>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</title><author>Melander, Anders ; Strøm, Emil ; Pind, Finnur ; Engsig-Karup, Allan P ; Jeong, Cheol-Ho ; Warburton, Tim ; Chalmers, Noel ; Hesthaven, Jan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-842aeb634430446817e6c739e3d4ae7e91600fe98775af8664f7e38e21258eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Architectural acoustics</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Galerkin method</topic><topic>High performance computing</topic><topic>Solvers</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melander, Anders</creatorcontrib><creatorcontrib>Strøm, Emil</creatorcontrib><creatorcontrib>Pind, Finnur</creatorcontrib><creatorcontrib>Engsig-Karup, Allan P</creatorcontrib><creatorcontrib>Jeong, Cheol-Ho</creatorcontrib><creatorcontrib>Warburton, Tim</creatorcontrib><creatorcontrib>Chalmers, Noel</creatorcontrib><creatorcontrib>Hesthaven, Jan S</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melander, Anders</au><au>Strøm, Emil</au><au>Pind, Finnur</au><au>Engsig-Karup, Allan P</au><au>Jeong, Cheol-Ho</au><au>Warburton, Tim</au><au>Chalmers, Noel</au><au>Hesthaven, Jan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2024-05</date><risdate>2024</risdate><volume>38</volume><issue>3</issue><spage>154</spage><epage>174</epage><pages>154-174</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped room with a dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable realistic large-scale wave-based room acoustics simulations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10943420231208948</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3310-9638</orcidid><orcidid>https://orcid.org/0000-0002-1293-7525</orcidid><orcidid>https://orcid.org/0000-0002-9864-7317</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-3420 |
ispartof | The international journal of high performance computing applications, 2024-05, Vol.38 (3), p.154-174 |
issn | 1094-3420 1741-2846 |
language | eng |
recordid | cdi_proquest_journals_3054382589 |
source | SAGE Complete; Alma/SFX Local Collection |
subjects | Acoustic waves Acoustics Architectural acoustics Boundary conditions Computer simulation Computing time Finite element analysis Finite element method Frequency ranges Galerkin method High performance computing Solvers Wave equations |
title | Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massively%20parallel%20nodal%20discontinous%20Galerkin%20finite%20element%20method%20simulator%20for%20room%20acoustics&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Melander,%20Anders&rft.date=2024-05&rft.volume=38&rft.issue=3&rft.spage=154&rft.epage=174&rft.pages=154-174&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/10943420231208948&rft_dat=%3Cproquest_cross%3E3054382589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054382589&rft_id=info:pmid/&rft_sage_id=10.1177_10943420231208948&rfr_iscdi=true |