Generalized Wasserstein barycenters between probability measures living on different subspaces

In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of Rd. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2023-12, Vol.33 (6A), p.4395
Hauptverfasser: Delon, Julie, Gozlan, Nathael, Saint Dizier, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6A
container_start_page 4395
container_title The Annals of applied probability
container_volume 33
creator Delon, Julie
Gozlan, Nathael
Saint Dizier, Alexandre
description In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of Rd. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and we propose a dual formulation. Finally, we explain how to compute numerically this generalized barycenter on discrete distributions, and we propose an explicit solution for Gaussian distributions.
doi_str_mv 10.1214/22-AAP1922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054207143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054207143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-f474369dddc86ad0f89cdf916af5b432b2a70b4c752625c715aa124720c5fa733</originalsourceid><addsrcrecordid>eNotkEFLxDAQhYMouK5e_AUBb0I1mSZNeyyLrsKCHhRvhiSdSJZuuyatsv56u-yehoHvzZv3CLnm7I4DF_cAWV2_8grghMyAF2VWqlydkhlnkmWSF-KcXKS0ZoxVolIz8rnEDqNpwx829MOkhDENGDpqTdw57IZppxaHX8SObmNvjQ1tGHZ0gyaNERNtw0_ovmjf0SZ4j3HS0DTatDUO0yU586ZNeHWcc_L--PC2eMpWL8vnRb3KHEgxZF4okRdV0zSuLEzDfFm5xle8MF5akYMFo5gVTkkoQDrFpTEchALmpDcqz-fk5nB3evF7xDTodT_GbrLUOZMCmOJiT90eKBf7lCJ6vY1hMwXVnOl9fxpAH_vL_wFObGQL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054207143</pqid></control><display><type>article</type><title>Generalized Wasserstein barycenters between probability measures living on different subspaces</title><source>Project Euclid Complete</source><creator>Delon, Julie ; Gozlan, Nathael ; Saint Dizier, Alexandre</creator><creatorcontrib>Delon, Julie ; Gozlan, Nathael ; Saint Dizier, Alexandre</creatorcontrib><description>In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of Rd. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and we propose a dual formulation. Finally, we explain how to compute numerically this generalized barycenter on discrete distributions, and we propose an explicit solution for Gaussian distributions.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/22-AAP1922</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Center of gravity ; Mathematical problems ; Normal distribution ; Probability ; Subspaces</subject><ispartof>The Annals of applied probability, 2023-12, Vol.33 (6A), p.4395</ispartof><rights>Copyright Institute of Mathematical Statistics Dec 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-f474369dddc86ad0f89cdf916af5b432b2a70b4c752625c715aa124720c5fa733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Delon, Julie</creatorcontrib><creatorcontrib>Gozlan, Nathael</creatorcontrib><creatorcontrib>Saint Dizier, Alexandre</creatorcontrib><title>Generalized Wasserstein barycenters between probability measures living on different subspaces</title><title>The Annals of applied probability</title><description>In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of Rd. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and we propose a dual formulation. Finally, we explain how to compute numerically this generalized barycenter on discrete distributions, and we propose an explicit solution for Gaussian distributions.</description><subject>Center of gravity</subject><subject>Mathematical problems</subject><subject>Normal distribution</subject><subject>Probability</subject><subject>Subspaces</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFLxDAQhYMouK5e_AUBb0I1mSZNeyyLrsKCHhRvhiSdSJZuuyatsv56u-yehoHvzZv3CLnm7I4DF_cAWV2_8grghMyAF2VWqlydkhlnkmWSF-KcXKS0ZoxVolIz8rnEDqNpwx829MOkhDENGDpqTdw57IZppxaHX8SObmNvjQ1tGHZ0gyaNERNtw0_ovmjf0SZ4j3HS0DTatDUO0yU586ZNeHWcc_L--PC2eMpWL8vnRb3KHEgxZF4okRdV0zSuLEzDfFm5xle8MF5akYMFo5gVTkkoQDrFpTEchALmpDcqz-fk5nB3evF7xDTodT_GbrLUOZMCmOJiT90eKBf7lCJ6vY1hMwXVnOl9fxpAH_vL_wFObGQL</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Delon, Julie</creator><creator>Gozlan, Nathael</creator><creator>Saint Dizier, Alexandre</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20231201</creationdate><title>Generalized Wasserstein barycenters between probability measures living on different subspaces</title><author>Delon, Julie ; Gozlan, Nathael ; Saint Dizier, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-f474369dddc86ad0f89cdf916af5b432b2a70b4c752625c715aa124720c5fa733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Center of gravity</topic><topic>Mathematical problems</topic><topic>Normal distribution</topic><topic>Probability</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delon, Julie</creatorcontrib><creatorcontrib>Gozlan, Nathael</creatorcontrib><creatorcontrib>Saint Dizier, Alexandre</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delon, Julie</au><au>Gozlan, Nathael</au><au>Saint Dizier, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Wasserstein barycenters between probability measures living on different subspaces</atitle><jtitle>The Annals of applied probability</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>6A</issue><spage>4395</spage><pages>4395-</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of Rd. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and we propose a dual formulation. Finally, we explain how to compute numerically this generalized barycenter on discrete distributions, and we propose an explicit solution for Gaussian distributions.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/22-AAP1922</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2023-12, Vol.33 (6A), p.4395
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_3054207143
source Project Euclid Complete
subjects Center of gravity
Mathematical problems
Normal distribution
Probability
Subspaces
title Generalized Wasserstein barycenters between probability measures living on different subspaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Wasserstein%20barycenters%20between%20probability%20measures%20living%20on%20different%20subspaces&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Delon,%20Julie&rft.date=2023-12-01&rft.volume=33&rft.issue=6A&rft.spage=4395&rft.pages=4395-&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/22-AAP1922&rft_dat=%3Cproquest_cross%3E3054207143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054207143&rft_id=info:pmid/&rfr_iscdi=true