Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems

In this paper, we prove some existence theorems for elliptic boundary value problems within the p ( x )-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2024-09, Vol.23 (4), Article 195
Hauptverfasser: Ayadi, Souad, Alzabut, Jehad, Afshari, Hojjat, Sahlan, Monireh Nosrati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Qualitative theory of dynamical systems
container_volume 23
creator Ayadi, Souad
Alzabut, Jehad
Afshari, Hojjat
Sahlan, Monireh Nosrati
description In this paper, we prove some existence theorems for elliptic boundary value problems within the p ( x )-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings.
doi_str_mv 10.1007/s12346-024-01054-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054049516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054049516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-542670fdcd9bc64ce1cfe14f304996663e89934d44d70451a0ee9c71241bf2c33</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgRhfR_E3GWWppVShYaO02ZDKJpqSTMZlKfXujI7hzde_iO9-9HADOCb4mGJc3iVDGBcKUI0xwwRE_ACMiBEWsqOhh3ouyQAUX-BicpLTBWNCS0RHw071LvWm1gcHCZfC73oU2QRsi7C73V2iuOq-0Uy2ceu-63ml4v14kGFqo4FpFp2pvMlgHbz7gslO5ae0UnLm9aeAiuLaHqzcTotmmU3BklU_m7HeOwctsupo8ovnzw9Pkbo40I7zPb1JRYtvopqq14NoQbQ3hlmFeVUIIZm6rivGG86bEvCAKG1PpklBOaks1Y2NwMfR2MbzvTOrlJuxim09KluXkmoKInKJDSseQUjRWdtFtVfyUBMtvq3KwKrNV-WNV8gyxAUo53L6a-Ff9D_UFBmR5Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054049516</pqid></control><display><type>article</type><title>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</title><source>SpringerLink_现刊</source><creator>Ayadi, Souad ; Alzabut, Jehad ; Afshari, Hojjat ; Sahlan, Monireh Nosrati</creator><creatorcontrib>Ayadi, Souad ; Alzabut, Jehad ; Afshari, Hojjat ; Sahlan, Monireh Nosrati</creatorcontrib><description>In this paper, we prove some existence theorems for elliptic boundary value problems within the p ( x )-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-024-01054-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Existence theorems ; Fixed points (mathematics) ; Mathematics ; Mathematics and Statistics ; Sobolev space</subject><ispartof>Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 195</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-542670fdcd9bc64ce1cfe14f304996663e89934d44d70451a0ee9c71241bf2c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12346-024-01054-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12346-024-01054-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ayadi, Souad</creatorcontrib><creatorcontrib>Alzabut, Jehad</creatorcontrib><creatorcontrib>Afshari, Hojjat</creatorcontrib><creatorcontrib>Sahlan, Monireh Nosrati</creatorcontrib><title>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this paper, we prove some existence theorems for elliptic boundary value problems within the p ( x )-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings.</description><subject>Boundary value problems</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sobolev space</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgRhfR_E3GWWppVShYaO02ZDKJpqSTMZlKfXujI7hzde_iO9-9HADOCb4mGJc3iVDGBcKUI0xwwRE_ACMiBEWsqOhh3ouyQAUX-BicpLTBWNCS0RHw071LvWm1gcHCZfC73oU2QRsi7C73V2iuOq-0Uy2ceu-63ml4v14kGFqo4FpFp2pvMlgHbz7gslO5ae0UnLm9aeAiuLaHqzcTotmmU3BklU_m7HeOwctsupo8ovnzw9Pkbo40I7zPb1JRYtvopqq14NoQbQ3hlmFeVUIIZm6rivGG86bEvCAKG1PpklBOaks1Y2NwMfR2MbzvTOrlJuxim09KluXkmoKInKJDSseQUjRWdtFtVfyUBMtvq3KwKrNV-WNV8gyxAUo53L6a-Ff9D_UFBmR5Dw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Ayadi, Souad</creator><creator>Alzabut, Jehad</creator><creator>Afshari, Hojjat</creator><creator>Sahlan, Monireh Nosrati</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</title><author>Ayadi, Souad ; Alzabut, Jehad ; Afshari, Hojjat ; Sahlan, Monireh Nosrati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-542670fdcd9bc64ce1cfe14f304996663e89934d44d70451a0ee9c71241bf2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayadi, Souad</creatorcontrib><creatorcontrib>Alzabut, Jehad</creatorcontrib><creatorcontrib>Afshari, Hojjat</creatorcontrib><creatorcontrib>Sahlan, Monireh Nosrati</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayadi, Souad</au><au>Alzabut, Jehad</au><au>Afshari, Hojjat</au><au>Sahlan, Monireh Nosrati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><artnum>195</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this paper, we prove some existence theorems for elliptic boundary value problems within the p ( x )-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-024-01054-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1575-5460
ispartof Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 195
issn 1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_3054049516
source SpringerLink_现刊
subjects Boundary value problems
Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Existence theorems
Fixed points (mathematics)
Mathematics
Mathematics and Statistics
Sobolev space
title Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Solutions%20for%20p(x)-Laplacian%20Elliptic%20BVPs%20on%20a%20Variable%20Sobolev%20Space%20Via%20Fixed%20Point%20Theorems&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Ayadi,%20Souad&rft.date=2024-09-01&rft.volume=23&rft.issue=4&rft.artnum=195&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-024-01054-4&rft_dat=%3Cproquest_cross%3E3054049516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054049516&rft_id=info:pmid/&rfr_iscdi=true