Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems
In this paper, we prove some existence theorems for elliptic boundary value problems within the p ( x )-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are us...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2024-09, Vol.23 (4), Article 195 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Qualitative theory of dynamical systems |
container_volume | 23 |
creator | Ayadi, Souad Alzabut, Jehad Afshari, Hojjat Sahlan, Monireh Nosrati |
description | In this paper, we prove some existence theorems for elliptic boundary value problems within the
p
(
x
)-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings. |
doi_str_mv | 10.1007/s12346-024-01054-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3054049516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054049516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-542670fdcd9bc64ce1cfe14f304996663e89934d44d70451a0ee9c71241bf2c33</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgRhfR_E3GWWppVShYaO02ZDKJpqSTMZlKfXujI7hzde_iO9-9HADOCb4mGJc3iVDGBcKUI0xwwRE_ACMiBEWsqOhh3ouyQAUX-BicpLTBWNCS0RHw071LvWm1gcHCZfC73oU2QRsi7C73V2iuOq-0Uy2ceu-63ml4v14kGFqo4FpFp2pvMlgHbz7gslO5ae0UnLm9aeAiuLaHqzcTotmmU3BklU_m7HeOwctsupo8ovnzw9Pkbo40I7zPb1JRYtvopqq14NoQbQ3hlmFeVUIIZm6rivGG86bEvCAKG1PpklBOaks1Y2NwMfR2MbzvTOrlJuxim09KluXkmoKInKJDSseQUjRWdtFtVfyUBMtvq3KwKrNV-WNV8gyxAUo53L6a-Ff9D_UFBmR5Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054049516</pqid></control><display><type>article</type><title>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</title><source>SpringerLink_现刊</source><creator>Ayadi, Souad ; Alzabut, Jehad ; Afshari, Hojjat ; Sahlan, Monireh Nosrati</creator><creatorcontrib>Ayadi, Souad ; Alzabut, Jehad ; Afshari, Hojjat ; Sahlan, Monireh Nosrati</creatorcontrib><description>In this paper, we prove some existence theorems for elliptic boundary value problems within the
p
(
x
)-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-024-01054-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Existence theorems ; Fixed points (mathematics) ; Mathematics ; Mathematics and Statistics ; Sobolev space</subject><ispartof>Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 195</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-542670fdcd9bc64ce1cfe14f304996663e89934d44d70451a0ee9c71241bf2c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12346-024-01054-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12346-024-01054-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ayadi, Souad</creatorcontrib><creatorcontrib>Alzabut, Jehad</creatorcontrib><creatorcontrib>Afshari, Hojjat</creatorcontrib><creatorcontrib>Sahlan, Monireh Nosrati</creatorcontrib><title>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this paper, we prove some existence theorems for elliptic boundary value problems within the
p
(
x
)-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings.</description><subject>Boundary value problems</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sobolev space</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgRhfR_E3GWWppVShYaO02ZDKJpqSTMZlKfXujI7hzde_iO9-9HADOCb4mGJc3iVDGBcKUI0xwwRE_ACMiBEWsqOhh3ouyQAUX-BicpLTBWNCS0RHw071LvWm1gcHCZfC73oU2QRsi7C73V2iuOq-0Uy2ceu-63ml4v14kGFqo4FpFp2pvMlgHbz7gslO5ae0UnLm9aeAiuLaHqzcTotmmU3BklU_m7HeOwctsupo8ovnzw9Pkbo40I7zPb1JRYtvopqq14NoQbQ3hlmFeVUIIZm6rivGG86bEvCAKG1PpklBOaks1Y2NwMfR2MbzvTOrlJuxim09KluXkmoKInKJDSseQUjRWdtFtVfyUBMtvq3KwKrNV-WNV8gyxAUo53L6a-Ff9D_UFBmR5Dw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Ayadi, Souad</creator><creator>Alzabut, Jehad</creator><creator>Afshari, Hojjat</creator><creator>Sahlan, Monireh Nosrati</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</title><author>Ayadi, Souad ; Alzabut, Jehad ; Afshari, Hojjat ; Sahlan, Monireh Nosrati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-542670fdcd9bc64ce1cfe14f304996663e89934d44d70451a0ee9c71241bf2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayadi, Souad</creatorcontrib><creatorcontrib>Alzabut, Jehad</creatorcontrib><creatorcontrib>Afshari, Hojjat</creatorcontrib><creatorcontrib>Sahlan, Monireh Nosrati</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayadi, Souad</au><au>Alzabut, Jehad</au><au>Afshari, Hojjat</au><au>Sahlan, Monireh Nosrati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><artnum>195</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this paper, we prove some existence theorems for elliptic boundary value problems within the
p
(
x
)-Laplacian on a variable Sobolev space. For this purpose, the main problem is transformed into a fixed point problem and then fixed point arguments such as Schaefer’s and Schauder’s theorems are used. Our approach involves fewer stringent assumptions on the nonlinearity function than the prior findings. An interesting example is presented to examine the validity of the theoretical findings.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-024-01054-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1575-5460 |
ispartof | Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 195 |
issn | 1575-5460 1662-3592 |
language | eng |
recordid | cdi_proquest_journals_3054049516 |
source | SpringerLink_现刊 |
subjects | Boundary value problems Difference and Functional Equations Dynamical Systems and Ergodic Theory Existence theorems Fixed points (mathematics) Mathematics Mathematics and Statistics Sobolev space |
title | Existence of Solutions for p(x)-Laplacian Elliptic BVPs on a Variable Sobolev Space Via Fixed Point Theorems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Solutions%20for%20p(x)-Laplacian%20Elliptic%20BVPs%20on%20a%20Variable%20Sobolev%20Space%20Via%20Fixed%20Point%20Theorems&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Ayadi,%20Souad&rft.date=2024-09-01&rft.volume=23&rft.issue=4&rft.artnum=195&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-024-01054-4&rft_dat=%3Cproquest_cross%3E3054049516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054049516&rft_id=info:pmid/&rfr_iscdi=true |