Constructing Efficient and Thermostable Red‐NIR Emitter via Cross Relaxation and Crystal‐Field Engineering of Holmium‐Based Perovskite‐Type Half Metal

Lanthanide ions, as dopants, have evoked widespread research interest owing to the rich optical, magnetic, and electrical properties, but their luminescent intensity is always limited by typical concentration quenching. Herein, a holmium‐based double perovskite of Cs2NaHoCl6 is reported, which surpr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2024-05, Vol.18 (5), p.n/a
Hauptverfasser: Sun, Ranran, Jia, Mochen, Chen, Xu, Zhang, Fei, Ma, Zhuangzhuang, Liu, Ying, Zhang, Jibin, Lian, Linyuan, Han, Yanbing, Li, Mengyao, Yang, Dongwen, Li, Xinjian, Zhang, Yu, Shan, Chongxin, Shi, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Laser & photonics reviews
container_volume 18
creator Sun, Ranran
Jia, Mochen
Chen, Xu
Zhang, Fei
Ma, Zhuangzhuang
Liu, Ying
Zhang, Jibin
Lian, Linyuan
Han, Yanbing
Li, Mengyao
Yang, Dongwen
Li, Xinjian
Zhang, Yu
Shan, Chongxin
Shi, Zhifeng
description Lanthanide ions, as dopants, have evoked widespread research interest owing to the rich optical, magnetic, and electrical properties, but their luminescent intensity is always limited by typical concentration quenching. Herein, a holmium‐based double perovskite of Cs2NaHoCl6 is reported, which surprisingly breaks through this barrier and achieves efficient red‐NIR emission by virtue of the large unit cell, low phonon energy, high content of activators, and cross relaxation phenomenon between Ho3+. The heavy Ho3+ also endows the intriguing half‐metallic nature with a down‐spin conducting band and an up‐spin insulating band. After performing ion doping on crystallographic sites of Na+ and Ho3+, the photoluminescence quantum yield of such red‐NIR emitter under 450 nm excitation is dramatically promoted to 82.3%, benefiting from the improved crystal field environment that alleviates the parity forbidden rule and suppresses non‐radiative recombination loss. Furthermore, the heat‐favorable phonon‐assisted population processes enable the robust photostability against thermal quenching. By combining a 450 nm chip, the red‐NIR light‐emitting diodes are fabricated, in which the wide‐coverage NIR emissions are ideally suited for medical light source, night vision, nondestructive examination, and transmission imaging. It is believed that this work will open an avenue for enhancing the fluorescence of lanthanide ions and developing advanced spintronic materials. Cs2NaHoCl6 is designed to overcome the typical concentration quenching phenomenon, which presented strong red‐NIR emissions and magnetic half‐metallic nature. After conducting ion doping engineering on different crystallographic sites, the photoluminescence quantum yield of red‐NIR emissions is improved to 82.3%, accompanied by high thermal stability due to the heat‐favorable phonon‐assisted population processes.
doi_str_mv 10.1002/lpor.202301028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053856358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053856358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-f463ff47338724c0f3412a9fa5c7f28c9f947cb567aea014b5097f44de82f3253</originalsourceid><addsrcrecordid>eNqFkc9OAjEQxjdGExG9em7iGey2-6d71A0ICQoheN6U3SkWu1tsC8rNR_AJfDifxCIGj85lJjPfbyaTLwguQ9wNMSbXaqVNl2BCcYgJOwpaIUtoh7EsOz7UDJ8GZ9YuMY59JK3gM9eNdWZdOtksUE8IWUpoHOJNhWZPYGptHZ8rQFOovt4_HoZT1Kulc2DQRnKUG22tnyn-xp3UzQ-Xm62HlJf3JagK9ZqFbADM7oIWaKBVLde1H99yCxWagNEb-ywd-NZsuwI04Eqge_A7zoMTwZWFi9_cDh77vVk-6IzGd8P8ZtQpaZiyjogSKkSUUspSEpVY0CgkPBM8LlNBWJmJLErLeZykHDgOo3mMs1REUQWMCEpi2g6u9ntXRr-swbpiqdem8ScLimPK4oTGzKu6e1W5e9uAKFZG1txsixAXOw-KnQfFwQMPZHvgVSrY_qMuRpPx9I_9BmUpkUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053856358</pqid></control><display><type>article</type><title>Constructing Efficient and Thermostable Red‐NIR Emitter via Cross Relaxation and Crystal‐Field Engineering of Holmium‐Based Perovskite‐Type Half Metal</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Ranran ; Jia, Mochen ; Chen, Xu ; Zhang, Fei ; Ma, Zhuangzhuang ; Liu, Ying ; Zhang, Jibin ; Lian, Linyuan ; Han, Yanbing ; Li, Mengyao ; Yang, Dongwen ; Li, Xinjian ; Zhang, Yu ; Shan, Chongxin ; Shi, Zhifeng</creator><creatorcontrib>Sun, Ranran ; Jia, Mochen ; Chen, Xu ; Zhang, Fei ; Ma, Zhuangzhuang ; Liu, Ying ; Zhang, Jibin ; Lian, Linyuan ; Han, Yanbing ; Li, Mengyao ; Yang, Dongwen ; Li, Xinjian ; Zhang, Yu ; Shan, Chongxin ; Shi, Zhifeng</creatorcontrib><description>Lanthanide ions, as dopants, have evoked widespread research interest owing to the rich optical, magnetic, and electrical properties, but their luminescent intensity is always limited by typical concentration quenching. Herein, a holmium‐based double perovskite of Cs2NaHoCl6 is reported, which surprisingly breaks through this barrier and achieves efficient red‐NIR emission by virtue of the large unit cell, low phonon energy, high content of activators, and cross relaxation phenomenon between Ho3+. The heavy Ho3+ also endows the intriguing half‐metallic nature with a down‐spin conducting band and an up‐spin insulating band. After performing ion doping on crystallographic sites of Na+ and Ho3+, the photoluminescence quantum yield of such red‐NIR emitter under 450 nm excitation is dramatically promoted to 82.3%, benefiting from the improved crystal field environment that alleviates the parity forbidden rule and suppresses non‐radiative recombination loss. Furthermore, the heat‐favorable phonon‐assisted population processes enable the robust photostability against thermal quenching. By combining a 450 nm chip, the red‐NIR light‐emitting diodes are fabricated, in which the wide‐coverage NIR emissions are ideally suited for medical light source, night vision, nondestructive examination, and transmission imaging. It is believed that this work will open an avenue for enhancing the fluorescence of lanthanide ions and developing advanced spintronic materials. Cs2NaHoCl6 is designed to overcome the typical concentration quenching phenomenon, which presented strong red‐NIR emissions and magnetic half‐metallic nature. After conducting ion doping engineering on different crystallographic sites, the photoluminescence quantum yield of red‐NIR emissions is improved to 82.3%, accompanied by high thermal stability due to the heat‐favorable phonon‐assisted population processes.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202301028</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cross relaxation ; Crystallography ; crystal‐field engineering ; double perovskites ; Electrical properties ; Emitters ; Holmium ; lanthanide ions ; Light emitting diodes ; Light sources ; Luminous intensity ; Magnetic properties ; Night vision ; Nondestructive testing ; Optical properties ; Perovskites ; Phonons ; Photoluminescence ; Quenching ; Radiative recombination ; red‐NIR emission ; Unit cell</subject><ispartof>Laser &amp; photonics reviews, 2024-05, Vol.18 (5), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-f463ff47338724c0f3412a9fa5c7f28c9f947cb567aea014b5097f44de82f3253</citedby><cites>FETCH-LOGICAL-c3178-f463ff47338724c0f3412a9fa5c7f28c9f947cb567aea014b5097f44de82f3253</cites><orcidid>0000-0002-9416-3948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202301028$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202301028$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sun, Ranran</creatorcontrib><creatorcontrib>Jia, Mochen</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Ma, Zhuangzhuang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Zhang, Jibin</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Han, Yanbing</creatorcontrib><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Yang, Dongwen</creatorcontrib><creatorcontrib>Li, Xinjian</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Shan, Chongxin</creatorcontrib><creatorcontrib>Shi, Zhifeng</creatorcontrib><title>Constructing Efficient and Thermostable Red‐NIR Emitter via Cross Relaxation and Crystal‐Field Engineering of Holmium‐Based Perovskite‐Type Half Metal</title><title>Laser &amp; photonics reviews</title><description>Lanthanide ions, as dopants, have evoked widespread research interest owing to the rich optical, magnetic, and electrical properties, but their luminescent intensity is always limited by typical concentration quenching. Herein, a holmium‐based double perovskite of Cs2NaHoCl6 is reported, which surprisingly breaks through this barrier and achieves efficient red‐NIR emission by virtue of the large unit cell, low phonon energy, high content of activators, and cross relaxation phenomenon between Ho3+. The heavy Ho3+ also endows the intriguing half‐metallic nature with a down‐spin conducting band and an up‐spin insulating band. After performing ion doping on crystallographic sites of Na+ and Ho3+, the photoluminescence quantum yield of such red‐NIR emitter under 450 nm excitation is dramatically promoted to 82.3%, benefiting from the improved crystal field environment that alleviates the parity forbidden rule and suppresses non‐radiative recombination loss. Furthermore, the heat‐favorable phonon‐assisted population processes enable the robust photostability against thermal quenching. By combining a 450 nm chip, the red‐NIR light‐emitting diodes are fabricated, in which the wide‐coverage NIR emissions are ideally suited for medical light source, night vision, nondestructive examination, and transmission imaging. It is believed that this work will open an avenue for enhancing the fluorescence of lanthanide ions and developing advanced spintronic materials. Cs2NaHoCl6 is designed to overcome the typical concentration quenching phenomenon, which presented strong red‐NIR emissions and magnetic half‐metallic nature. After conducting ion doping engineering on different crystallographic sites, the photoluminescence quantum yield of red‐NIR emissions is improved to 82.3%, accompanied by high thermal stability due to the heat‐favorable phonon‐assisted population processes.</description><subject>Cross relaxation</subject><subject>Crystallography</subject><subject>crystal‐field engineering</subject><subject>double perovskites</subject><subject>Electrical properties</subject><subject>Emitters</subject><subject>Holmium</subject><subject>lanthanide ions</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Luminous intensity</subject><subject>Magnetic properties</subject><subject>Night vision</subject><subject>Nondestructive testing</subject><subject>Optical properties</subject><subject>Perovskites</subject><subject>Phonons</subject><subject>Photoluminescence</subject><subject>Quenching</subject><subject>Radiative recombination</subject><subject>red‐NIR emission</subject><subject>Unit cell</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OAjEQxjdGExG9em7iGey2-6d71A0ICQoheN6U3SkWu1tsC8rNR_AJfDifxCIGj85lJjPfbyaTLwguQ9wNMSbXaqVNl2BCcYgJOwpaIUtoh7EsOz7UDJ8GZ9YuMY59JK3gM9eNdWZdOtksUE8IWUpoHOJNhWZPYGptHZ8rQFOovt4_HoZT1Kulc2DQRnKUG22tnyn-xp3UzQ-Xm62HlJf3JagK9ZqFbADM7oIWaKBVLde1H99yCxWagNEb-ywd-NZsuwI04Eqge_A7zoMTwZWFi9_cDh77vVk-6IzGd8P8ZtQpaZiyjogSKkSUUspSEpVY0CgkPBM8LlNBWJmJLErLeZykHDgOo3mMs1REUQWMCEpi2g6u9ntXRr-swbpiqdem8ScLimPK4oTGzKu6e1W5e9uAKFZG1txsixAXOw-KnQfFwQMPZHvgVSrY_qMuRpPx9I_9BmUpkUs</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Sun, Ranran</creator><creator>Jia, Mochen</creator><creator>Chen, Xu</creator><creator>Zhang, Fei</creator><creator>Ma, Zhuangzhuang</creator><creator>Liu, Ying</creator><creator>Zhang, Jibin</creator><creator>Lian, Linyuan</creator><creator>Han, Yanbing</creator><creator>Li, Mengyao</creator><creator>Yang, Dongwen</creator><creator>Li, Xinjian</creator><creator>Zhang, Yu</creator><creator>Shan, Chongxin</creator><creator>Shi, Zhifeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9416-3948</orcidid></search><sort><creationdate>202405</creationdate><title>Constructing Efficient and Thermostable Red‐NIR Emitter via Cross Relaxation and Crystal‐Field Engineering of Holmium‐Based Perovskite‐Type Half Metal</title><author>Sun, Ranran ; Jia, Mochen ; Chen, Xu ; Zhang, Fei ; Ma, Zhuangzhuang ; Liu, Ying ; Zhang, Jibin ; Lian, Linyuan ; Han, Yanbing ; Li, Mengyao ; Yang, Dongwen ; Li, Xinjian ; Zhang, Yu ; Shan, Chongxin ; Shi, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-f463ff47338724c0f3412a9fa5c7f28c9f947cb567aea014b5097f44de82f3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cross relaxation</topic><topic>Crystallography</topic><topic>crystal‐field engineering</topic><topic>double perovskites</topic><topic>Electrical properties</topic><topic>Emitters</topic><topic>Holmium</topic><topic>lanthanide ions</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Luminous intensity</topic><topic>Magnetic properties</topic><topic>Night vision</topic><topic>Nondestructive testing</topic><topic>Optical properties</topic><topic>Perovskites</topic><topic>Phonons</topic><topic>Photoluminescence</topic><topic>Quenching</topic><topic>Radiative recombination</topic><topic>red‐NIR emission</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ranran</creatorcontrib><creatorcontrib>Jia, Mochen</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Ma, Zhuangzhuang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Zhang, Jibin</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Han, Yanbing</creatorcontrib><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Yang, Dongwen</creatorcontrib><creatorcontrib>Li, Xinjian</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Shan, Chongxin</creatorcontrib><creatorcontrib>Shi, Zhifeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ranran</au><au>Jia, Mochen</au><au>Chen, Xu</au><au>Zhang, Fei</au><au>Ma, Zhuangzhuang</au><au>Liu, Ying</au><au>Zhang, Jibin</au><au>Lian, Linyuan</au><au>Han, Yanbing</au><au>Li, Mengyao</au><au>Yang, Dongwen</au><au>Li, Xinjian</au><au>Zhang, Yu</au><au>Shan, Chongxin</au><au>Shi, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Efficient and Thermostable Red‐NIR Emitter via Cross Relaxation and Crystal‐Field Engineering of Holmium‐Based Perovskite‐Type Half Metal</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2024-05</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Lanthanide ions, as dopants, have evoked widespread research interest owing to the rich optical, magnetic, and electrical properties, but their luminescent intensity is always limited by typical concentration quenching. Herein, a holmium‐based double perovskite of Cs2NaHoCl6 is reported, which surprisingly breaks through this barrier and achieves efficient red‐NIR emission by virtue of the large unit cell, low phonon energy, high content of activators, and cross relaxation phenomenon between Ho3+. The heavy Ho3+ also endows the intriguing half‐metallic nature with a down‐spin conducting band and an up‐spin insulating band. After performing ion doping on crystallographic sites of Na+ and Ho3+, the photoluminescence quantum yield of such red‐NIR emitter under 450 nm excitation is dramatically promoted to 82.3%, benefiting from the improved crystal field environment that alleviates the parity forbidden rule and suppresses non‐radiative recombination loss. Furthermore, the heat‐favorable phonon‐assisted population processes enable the robust photostability against thermal quenching. By combining a 450 nm chip, the red‐NIR light‐emitting diodes are fabricated, in which the wide‐coverage NIR emissions are ideally suited for medical light source, night vision, nondestructive examination, and transmission imaging. It is believed that this work will open an avenue for enhancing the fluorescence of lanthanide ions and developing advanced spintronic materials. Cs2NaHoCl6 is designed to overcome the typical concentration quenching phenomenon, which presented strong red‐NIR emissions and magnetic half‐metallic nature. After conducting ion doping engineering on different crystallographic sites, the photoluminescence quantum yield of red‐NIR emissions is improved to 82.3%, accompanied by high thermal stability due to the heat‐favorable phonon‐assisted population processes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202301028</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9416-3948</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2024-05, Vol.18 (5), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_3053856358
source Wiley Online Library Journals Frontfile Complete
subjects Cross relaxation
Crystallography
crystal‐field engineering
double perovskites
Electrical properties
Emitters
Holmium
lanthanide ions
Light emitting diodes
Light sources
Luminous intensity
Magnetic properties
Night vision
Nondestructive testing
Optical properties
Perovskites
Phonons
Photoluminescence
Quenching
Radiative recombination
red‐NIR emission
Unit cell
title Constructing Efficient and Thermostable Red‐NIR Emitter via Cross Relaxation and Crystal‐Field Engineering of Holmium‐Based Perovskite‐Type Half Metal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Efficient%20and%20Thermostable%20Red%E2%80%90NIR%20Emitter%20via%20Cross%20Relaxation%20and%20Crystal%E2%80%90Field%20Engineering%20of%20Holmium%E2%80%90Based%20Perovskite%E2%80%90Type%20Half%20Metal&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Sun,%20Ranran&rft.date=2024-05&rft.volume=18&rft.issue=5&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202301028&rft_dat=%3Cproquest_cross%3E3053856358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053856358&rft_id=info:pmid/&rfr_iscdi=true