Bivariate distributions with equi-dispersed normal conditionals and related models

A random variable is equi-dispersed if its mean equals its variance. A Poisson distribution is a classical example of this phenomenon. However, a less well-known fact is that the class of normal densities that are equi-dispersed constitutes a one parameter exponential family. In the present article...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrika 2024-05, Vol.87 (4), p.427-448
Hauptverfasser: Arnold, Barry C., Manjunath, B. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 4
container_start_page 427
container_title Metrika
container_volume 87
creator Arnold, Barry C.
Manjunath, B. G.
description A random variable is equi-dispersed if its mean equals its variance. A Poisson distribution is a classical example of this phenomenon. However, a less well-known fact is that the class of normal densities that are equi-dispersed constitutes a one parameter exponential family. In the present article our main focus is on univariate and bivariate models with equi-dispersed normal component distributions. We discuss distributional features of such models, explore inferential aspects and include an example of application of equi-dispersed models. Some related models are discused in Appendices.
doi_str_mv 10.1007/s00184-023-00921-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053802066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053802066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e81c924acbc9f9e7e0f6f481e14b14998200970993771a69f081a4ff94b1c50d3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AU8Bz9HOYzKToy6-QBBEwVvIThLNMjvZTWYU_71ZR_DmqaHrq6K7EDqlcE4B6osMQBtBgHECoBgl1R6aUcEroph83UczACYJ5bw6REc5rwpeS8Zm6OkqfJgUzOCwDXlIYTkOIfYZf4bhHbvtGEjZb1zKzuI-prXpcBt7G3aU6TI2vcXJdSXA4nW0rsvH6MAXxZ38zjl6ubl-XtyRh8fb-8XlA2k58IG4hraKCdMuW-WVqx146UVDHRVLKpRqWPmkBqV4XVMjlYeGGuG9KnJbgeVzdDblblLcji4PehXHtDtKc6h4AwykLBSbqDbFnJPzepPC2qQvTUHvutNTd7p0p3-601Ux8cmUC9y_ufQX_Y_rGwUfchg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053802066</pqid></control><display><type>article</type><title>Bivariate distributions with equi-dispersed normal conditionals and related models</title><source>SpringerLink</source><creator>Arnold, Barry C. ; Manjunath, B. G.</creator><creatorcontrib>Arnold, Barry C. ; Manjunath, B. G.</creatorcontrib><description>A random variable is equi-dispersed if its mean equals its variance. A Poisson distribution is a classical example of this phenomenon. However, a less well-known fact is that the class of normal densities that are equi-dispersed constitutes a one parameter exponential family. In the present article our main focus is on univariate and bivariate models with equi-dispersed normal component distributions. We discuss distributional features of such models, explore inferential aspects and include an example of application of equi-dispersed models. Some related models are discused in Appendices.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-023-00921-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bivariate analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Poisson distribution ; Probability Theory and Stochastic Processes ; Random variables ; Statistics</subject><ispartof>Metrika, 2024-05, Vol.87 (4), p.427-448</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-e81c924acbc9f9e7e0f6f481e14b14998200970993771a69f081a4ff94b1c50d3</cites><orcidid>0000-0003-2687-0138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00184-023-00921-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00184-023-00921-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arnold, Barry C.</creatorcontrib><creatorcontrib>Manjunath, B. G.</creatorcontrib><title>Bivariate distributions with equi-dispersed normal conditionals and related models</title><title>Metrika</title><addtitle>Metrika</addtitle><description>A random variable is equi-dispersed if its mean equals its variance. A Poisson distribution is a classical example of this phenomenon. However, a less well-known fact is that the class of normal densities that are equi-dispersed constitutes a one parameter exponential family. In the present article our main focus is on univariate and bivariate models with equi-dispersed normal component distributions. We discuss distributional features of such models, explore inferential aspects and include an example of application of equi-dispersed models. Some related models are discused in Appendices.</description><subject>Bivariate analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Poisson distribution</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AU8Bz9HOYzKToy6-QBBEwVvIThLNMjvZTWYU_71ZR_DmqaHrq6K7EDqlcE4B6osMQBtBgHECoBgl1R6aUcEroph83UczACYJ5bw6REc5rwpeS8Zm6OkqfJgUzOCwDXlIYTkOIfYZf4bhHbvtGEjZb1zKzuI-prXpcBt7G3aU6TI2vcXJdSXA4nW0rsvH6MAXxZ38zjl6ubl-XtyRh8fb-8XlA2k58IG4hraKCdMuW-WVqx146UVDHRVLKpRqWPmkBqV4XVMjlYeGGuG9KnJbgeVzdDblblLcji4PehXHtDtKc6h4AwykLBSbqDbFnJPzepPC2qQvTUHvutNTd7p0p3-601Ux8cmUC9y_ufQX_Y_rGwUfchg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Arnold, Barry C.</creator><creator>Manjunath, B. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2687-0138</orcidid></search><sort><creationdate>20240501</creationdate><title>Bivariate distributions with equi-dispersed normal conditionals and related models</title><author>Arnold, Barry C. ; Manjunath, B. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e81c924acbc9f9e7e0f6f481e14b14998200970993771a69f081a4ff94b1c50d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bivariate analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Poisson distribution</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Barry C.</creatorcontrib><creatorcontrib>Manjunath, B. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Barry C.</au><au>Manjunath, B. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate distributions with equi-dispersed normal conditionals and related models</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>87</volume><issue>4</issue><spage>427</spage><epage>448</epage><pages>427-448</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>A random variable is equi-dispersed if its mean equals its variance. A Poisson distribution is a classical example of this phenomenon. However, a less well-known fact is that the class of normal densities that are equi-dispersed constitutes a one parameter exponential family. In the present article our main focus is on univariate and bivariate models with equi-dispersed normal component distributions. We discuss distributional features of such models, explore inferential aspects and include an example of application of equi-dispersed models. Some related models are discused in Appendices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-023-00921-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2687-0138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-1335
ispartof Metrika, 2024-05, Vol.87 (4), p.427-448
issn 0026-1335
1435-926X
language eng
recordid cdi_proquest_journals_3053802066
source SpringerLink
subjects Bivariate analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Poisson distribution
Probability Theory and Stochastic Processes
Random variables
Statistics
title Bivariate distributions with equi-dispersed normal conditionals and related models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20distributions%20with%20equi-dispersed%20normal%20conditionals%20and%20related%20models&rft.jtitle=Metrika&rft.au=Arnold,%20Barry%20C.&rft.date=2024-05-01&rft.volume=87&rft.issue=4&rft.spage=427&rft.epage=448&rft.pages=427-448&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-023-00921-5&rft_dat=%3Cproquest_cross%3E3053802066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053802066&rft_id=info:pmid/&rfr_iscdi=true