Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors
The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect t...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2024-06, Vol.53 (6), p.3078-3088 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3088 |
---|---|
container_issue | 6 |
container_start_page | 3078 |
container_title | Journal of electronic materials |
container_volume | 53 |
creator | Saikh, Samayun Rajan, Nikhitha Mukherjee, Ayash Kanto |
description | The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted. |
doi_str_mv | 10.1007/s11664-024-11065-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053354886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053354886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6c77fe1117b6068ad6d320110769455806aff5e3d9b4dc383e2d549b1ebfd0773</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOZrZbJLtUUurhUpBKngL2U1St7RJTdKDb29qRW-eZg7__w3zIXQN9BYolXcJQIia0KomAFRwAidoALxmBBrxdooGlAkgvGL8HF2ktKYUODQwQHb5buO2D77v8MyvbZfLjrU3eBx81l3GLzb1KWvfWfwcjN1gFyJ-CDmH7W9mEVf6QJj2dmPIxLnCwcuo_aEaYrpEZ05vkr36mUP0Op0sx09kvnicje_npKskzUR0UjoLALIVVDTaCMMqWh6SYlRz3lChneOWmVFbm441zFaG16MWbOsMlZIN0c2Ru4vhY29TVuuwj76cVIxyxnjdNKKkqmOqiyGlaJ3axX6r46cCqg461VGnKjrVt04FpcSOpVTCfmXjH_qf1hfm-Hga</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053354886</pqid></control><display><type>article</type><title>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</title><source>Springer Journals</source><creator>Saikh, Samayun ; Rajan, Nikhitha ; Mukherjee, Ayash Kanto</creator><creatorcontrib>Saikh, Samayun ; Rajan, Nikhitha ; Mukherjee, Ayash Kanto</creatorcontrib><description>The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11065-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier mobility ; Characterization and Evaluation of Materials ; Charge density ; Chemistry and Materials Science ; Contact resistance ; Electric potential ; Electrodes ; Electronics and Microelectronics ; Electrons ; Field effect transistors ; Instrumentation ; Materials Science ; Metals ; Optical and Electronic Materials ; Original Research Article ; Semiconductor devices ; Semiconductors ; Solid State Physics ; Transistors ; Voltage</subject><ispartof>Journal of electronic materials, 2024-06, Vol.53 (6), p.3078-3088</ispartof><rights>The Minerals, Metals & Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6c77fe1117b6068ad6d320110769455806aff5e3d9b4dc383e2d549b1ebfd0773</cites><orcidid>0000-0002-0560-911X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11065-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11065-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Saikh, Samayun</creatorcontrib><creatorcontrib>Rajan, Nikhitha</creatorcontrib><creatorcontrib>Mukherjee, Ayash Kanto</creatorcontrib><title>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted.</description><subject>Carrier mobility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge density</subject><subject>Chemistry and Materials Science</subject><subject>Contact resistance</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>Field effect transistors</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Solid State Physics</subject><subject>Transistors</subject><subject>Voltage</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngOZrZbJLtUUurhUpBKngL2U1St7RJTdKDb29qRW-eZg7__w3zIXQN9BYolXcJQIia0KomAFRwAidoALxmBBrxdooGlAkgvGL8HF2ktKYUODQwQHb5buO2D77v8MyvbZfLjrU3eBx81l3GLzb1KWvfWfwcjN1gFyJ-CDmH7W9mEVf6QJj2dmPIxLnCwcuo_aEaYrpEZ05vkr36mUP0Op0sx09kvnicje_npKskzUR0UjoLALIVVDTaCMMqWh6SYlRz3lChneOWmVFbm441zFaG16MWbOsMlZIN0c2Ru4vhY29TVuuwj76cVIxyxnjdNKKkqmOqiyGlaJ3axX6r46cCqg461VGnKjrVt04FpcSOpVTCfmXjH_qf1hfm-Hga</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Saikh, Samayun</creator><creator>Rajan, Nikhitha</creator><creator>Mukherjee, Ayash Kanto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0560-911X</orcidid></search><sort><creationdate>20240601</creationdate><title>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</title><author>Saikh, Samayun ; Rajan, Nikhitha ; Mukherjee, Ayash Kanto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6c77fe1117b6068ad6d320110769455806aff5e3d9b4dc383e2d549b1ebfd0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier mobility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge density</topic><topic>Chemistry and Materials Science</topic><topic>Contact resistance</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>Field effect transistors</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Solid State Physics</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saikh, Samayun</creatorcontrib><creatorcontrib>Rajan, Nikhitha</creatorcontrib><creatorcontrib>Mukherjee, Ayash Kanto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saikh, Samayun</au><au>Rajan, Nikhitha</au><au>Mukherjee, Ayash Kanto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>53</volume><issue>6</issue><spage>3078</spage><epage>3088</epage><pages>3078-3088</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11065-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0560-911X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2024-06, Vol.53 (6), p.3078-3088 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_3053354886 |
source | Springer Journals |
subjects | Carrier mobility Characterization and Evaluation of Materials Charge density Chemistry and Materials Science Contact resistance Electric potential Electrodes Electronics and Microelectronics Electrons Field effect transistors Instrumentation Materials Science Metals Optical and Electronic Materials Original Research Article Semiconductor devices Semiconductors Solid State Physics Transistors Voltage |
title | Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermionic%20Injection%20and%20Contact%20Resistance%20Model%20for%20Bottom%20Contact%20Organic%20Field-Effect%20Transistors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Saikh,%20Samayun&rft.date=2024-06-01&rft.volume=53&rft.issue=6&rft.spage=3078&rft.epage=3088&rft.pages=3078-3088&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11065-1&rft_dat=%3Cproquest_cross%3E3053354886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053354886&rft_id=info:pmid/&rfr_iscdi=true |