Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors

The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2024-06, Vol.53 (6), p.3078-3088
Hauptverfasser: Saikh, Samayun, Rajan, Nikhitha, Mukherjee, Ayash Kanto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3088
container_issue 6
container_start_page 3078
container_title Journal of electronic materials
container_volume 53
creator Saikh, Samayun
Rajan, Nikhitha
Mukherjee, Ayash Kanto
description The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted.
doi_str_mv 10.1007/s11664-024-11065-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053354886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053354886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6c77fe1117b6068ad6d320110769455806aff5e3d9b4dc383e2d549b1ebfd0773</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOZrZbJLtUUurhUpBKngL2U1St7RJTdKDb29qRW-eZg7__w3zIXQN9BYolXcJQIia0KomAFRwAidoALxmBBrxdooGlAkgvGL8HF2ktKYUODQwQHb5buO2D77v8MyvbZfLjrU3eBx81l3GLzb1KWvfWfwcjN1gFyJ-CDmH7W9mEVf6QJj2dmPIxLnCwcuo_aEaYrpEZ05vkr36mUP0Op0sx09kvnicje_npKskzUR0UjoLALIVVDTaCMMqWh6SYlRz3lChneOWmVFbm441zFaG16MWbOsMlZIN0c2Ru4vhY29TVuuwj76cVIxyxnjdNKKkqmOqiyGlaJ3axX6r46cCqg461VGnKjrVt04FpcSOpVTCfmXjH_qf1hfm-Hga</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053354886</pqid></control><display><type>article</type><title>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</title><source>Springer Journals</source><creator>Saikh, Samayun ; Rajan, Nikhitha ; Mukherjee, Ayash Kanto</creator><creatorcontrib>Saikh, Samayun ; Rajan, Nikhitha ; Mukherjee, Ayash Kanto</creatorcontrib><description>The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11065-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier mobility ; Characterization and Evaluation of Materials ; Charge density ; Chemistry and Materials Science ; Contact resistance ; Electric potential ; Electrodes ; Electronics and Microelectronics ; Electrons ; Field effect transistors ; Instrumentation ; Materials Science ; Metals ; Optical and Electronic Materials ; Original Research Article ; Semiconductor devices ; Semiconductors ; Solid State Physics ; Transistors ; Voltage</subject><ispartof>Journal of electronic materials, 2024-06, Vol.53 (6), p.3078-3088</ispartof><rights>The Minerals, Metals &amp; Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6c77fe1117b6068ad6d320110769455806aff5e3d9b4dc383e2d549b1ebfd0773</cites><orcidid>0000-0002-0560-911X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11065-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11065-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Saikh, Samayun</creatorcontrib><creatorcontrib>Rajan, Nikhitha</creatorcontrib><creatorcontrib>Mukherjee, Ayash Kanto</creatorcontrib><title>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted.</description><subject>Carrier mobility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge density</subject><subject>Chemistry and Materials Science</subject><subject>Contact resistance</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>Field effect transistors</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Solid State Physics</subject><subject>Transistors</subject><subject>Voltage</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngOZrZbJLtUUurhUpBKngL2U1St7RJTdKDb29qRW-eZg7__w3zIXQN9BYolXcJQIia0KomAFRwAidoALxmBBrxdooGlAkgvGL8HF2ktKYUODQwQHb5buO2D77v8MyvbZfLjrU3eBx81l3GLzb1KWvfWfwcjN1gFyJ-CDmH7W9mEVf6QJj2dmPIxLnCwcuo_aEaYrpEZ05vkr36mUP0Op0sx09kvnicje_npKskzUR0UjoLALIVVDTaCMMqWh6SYlRz3lChneOWmVFbm441zFaG16MWbOsMlZIN0c2Ru4vhY29TVuuwj76cVIxyxnjdNKKkqmOqiyGlaJ3axX6r46cCqg461VGnKjrVt04FpcSOpVTCfmXjH_qf1hfm-Hga</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Saikh, Samayun</creator><creator>Rajan, Nikhitha</creator><creator>Mukherjee, Ayash Kanto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0560-911X</orcidid></search><sort><creationdate>20240601</creationdate><title>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</title><author>Saikh, Samayun ; Rajan, Nikhitha ; Mukherjee, Ayash Kanto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6c77fe1117b6068ad6d320110769455806aff5e3d9b4dc383e2d549b1ebfd0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier mobility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge density</topic><topic>Chemistry and Materials Science</topic><topic>Contact resistance</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>Field effect transistors</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Solid State Physics</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saikh, Samayun</creatorcontrib><creatorcontrib>Rajan, Nikhitha</creatorcontrib><creatorcontrib>Mukherjee, Ayash Kanto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saikh, Samayun</au><au>Rajan, Nikhitha</au><au>Mukherjee, Ayash Kanto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>53</volume><issue>6</issue><spage>3078</spage><epage>3088</epage><pages>3078-3088</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The presence of high contact resistance at the metal–organic semiconductor interface is a crucial issue in performance of organic field-effect transistors. In this report, an analytical expression of gate-voltage-dependent contact resistance has been derived for bottom contact organic field-effect transistor geometry. In this derivation, the thermionic injection mechanism, gate-voltage-dependent carrier mobility in the vicinity of the metal–organic semiconductor interface, and the Poole–Frenkel barrier lowering effect of the injection barrier have been taken into account. The developed analytical expression has been fitted with published data of a pentacene-based organic field-effect transistor. From the fit, hopping site density, interfacial charge density, and maximum mobility, near metal–organic semiconductor contact has been extracted. Also, numerical plots for output and transfer characteristics are plotted.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11065-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0560-911X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2024-06, Vol.53 (6), p.3078-3088
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_3053354886
source Springer Journals
subjects Carrier mobility
Characterization and Evaluation of Materials
Charge density
Chemistry and Materials Science
Contact resistance
Electric potential
Electrodes
Electronics and Microelectronics
Electrons
Field effect transistors
Instrumentation
Materials Science
Metals
Optical and Electronic Materials
Original Research Article
Semiconductor devices
Semiconductors
Solid State Physics
Transistors
Voltage
title Thermionic Injection and Contact Resistance Model for Bottom Contact Organic Field-Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermionic%20Injection%20and%20Contact%20Resistance%20Model%20for%20Bottom%20Contact%20Organic%20Field-Effect%20Transistors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Saikh,%20Samayun&rft.date=2024-06-01&rft.volume=53&rft.issue=6&rft.spage=3078&rft.epage=3088&rft.pages=3078-3088&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11065-1&rft_dat=%3Cproquest_cross%3E3053354886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053354886&rft_id=info:pmid/&rfr_iscdi=true