Reduced implication-bias logic loss for neuro-symbolic learning

Integrating logical reasoning and machine learning by approximating logical inference with differentiable operators is a widely used technique in the field of Neuro-Symbolic Learning. However, some differentiable operators could introduce significant biases during backpropagation, which can degrade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2024-06, Vol.113 (6), p.3357-3377
Hauptverfasser: He, Hao-Yuan, Dai, Wang-Zhou, Li, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3377
container_issue 6
container_start_page 3357
container_title Machine learning
container_volume 113
creator He, Hao-Yuan
Dai, Wang-Zhou
Li, Ming
description Integrating logical reasoning and machine learning by approximating logical inference with differentiable operators is a widely used technique in the field of Neuro-Symbolic Learning. However, some differentiable operators could introduce significant biases during backpropagation, which can degrade the performance of Neuro-Symbolic systems. In this paper, we demonstrate that the loss functions derived from fuzzy logic operators commonly exhibit a bias, referred to as Implication Bias . To mitigate this bias, we propose a simple yet efficient method to transform the biased loss functions into Reduced Implication-bias Logic Loss (RILL) . Empirical studies demonstrate that RILL outperforms the biased logic loss functions, especially when the knowledge base is incomplete or the supervised training data is insufficient.
doi_str_mv 10.1007/s10994-023-06436-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053350364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053350364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-67c697ca3b7419db9b0196b66e0c87d148a761d09f8f9f04f80ed8d5f18413b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWFe_gKcFz9HJZvM6iRRfUBCk97B5lZTtbk26h357U1fw5mWGGf7_efwQuiVwTwDEQyagVIuhoRh4Szluz9CCMFFKxtk5WoCUDHPSsEt0lfMWABou-QI9fno3We_quNv30XaHOA7YxC7X_biJtsSc6zCmevBTGnE-7szYn_q-S0McNtfoInR99je_uULrl-f18g2vPl7fl08rbBsBB8yF5UrYjhrREuWMMkAUN5x7sFI40spOcOJABRlUgDZI8E46FohsCTW0Qnfz2H0avyafD3o7TmkoGzUFRikDWt6uUDOrbCpnJx_0PsVdl46agD5x0jMnXTjpH076ZKKzKRfxsPHpb_Q_rm8UB2px</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053350364</pqid></control><display><type>article</type><title>Reduced implication-bias logic loss for neuro-symbolic learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Hao-Yuan ; Dai, Wang-Zhou ; Li, Ming</creator><creatorcontrib>He, Hao-Yuan ; Dai, Wang-Zhou ; Li, Ming</creatorcontrib><description>Integrating logical reasoning and machine learning by approximating logical inference with differentiable operators is a widely used technique in the field of Neuro-Symbolic Learning. However, some differentiable operators could introduce significant biases during backpropagation, which can degrade the performance of Neuro-Symbolic systems. In this paper, we demonstrate that the loss functions derived from fuzzy logic operators commonly exhibit a bias, referred to as Implication Bias . To mitigate this bias, we propose a simple yet efficient method to transform the biased loss functions into Reduced Implication-bias Logic Loss (RILL) . Empirical studies demonstrate that RILL outperforms the biased logic loss functions, especially when the knowledge base is incomplete or the supervised training data is insufficient.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-023-06436-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Back propagation ; Bias ; Cognition &amp; reasoning ; Computer Science ; Control ; Fuzzy logic ; Knowledge ; Knowledge bases (artificial intelligence) ; Logic programming ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Neural networks ; Operators ; Performance degradation ; Robotics ; Simulation and Modeling ; Special Issue of the ACML 2023</subject><ispartof>Machine learning, 2024-06, Vol.113 (6), p.3357-3377</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-67c697ca3b7419db9b0196b66e0c87d148a761d09f8f9f04f80ed8d5f18413b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-023-06436-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-023-06436-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>He, Hao-Yuan</creatorcontrib><creatorcontrib>Dai, Wang-Zhou</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><title>Reduced implication-bias logic loss for neuro-symbolic learning</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Integrating logical reasoning and machine learning by approximating logical inference with differentiable operators is a widely used technique in the field of Neuro-Symbolic Learning. However, some differentiable operators could introduce significant biases during backpropagation, which can degrade the performance of Neuro-Symbolic systems. In this paper, we demonstrate that the loss functions derived from fuzzy logic operators commonly exhibit a bias, referred to as Implication Bias . To mitigate this bias, we propose a simple yet efficient method to transform the biased loss functions into Reduced Implication-bias Logic Loss (RILL) . Empirical studies demonstrate that RILL outperforms the biased logic loss functions, especially when the knowledge base is incomplete or the supervised training data is insufficient.</description><subject>Artificial Intelligence</subject><subject>Back propagation</subject><subject>Bias</subject><subject>Cognition &amp; reasoning</subject><subject>Computer Science</subject><subject>Control</subject><subject>Fuzzy logic</subject><subject>Knowledge</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Logic programming</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Neural networks</subject><subject>Operators</subject><subject>Performance degradation</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Special Issue of the ACML 2023</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWFe_gKcFz9HJZvM6iRRfUBCk97B5lZTtbk26h357U1fw5mWGGf7_efwQuiVwTwDEQyagVIuhoRh4Szluz9CCMFFKxtk5WoCUDHPSsEt0lfMWABou-QI9fno3We_quNv30XaHOA7YxC7X_biJtsSc6zCmevBTGnE-7szYn_q-S0McNtfoInR99je_uULrl-f18g2vPl7fl08rbBsBB8yF5UrYjhrREuWMMkAUN5x7sFI40spOcOJABRlUgDZI8E46FohsCTW0Qnfz2H0avyafD3o7TmkoGzUFRikDWt6uUDOrbCpnJx_0PsVdl46agD5x0jMnXTjpH076ZKKzKRfxsPHpb_Q_rm8UB2px</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>He, Hao-Yuan</creator><creator>Dai, Wang-Zhou</creator><creator>Li, Ming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240601</creationdate><title>Reduced implication-bias logic loss for neuro-symbolic learning</title><author>He, Hao-Yuan ; Dai, Wang-Zhou ; Li, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-67c697ca3b7419db9b0196b66e0c87d148a761d09f8f9f04f80ed8d5f18413b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Back propagation</topic><topic>Bias</topic><topic>Cognition &amp; reasoning</topic><topic>Computer Science</topic><topic>Control</topic><topic>Fuzzy logic</topic><topic>Knowledge</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Logic programming</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Neural networks</topic><topic>Operators</topic><topic>Performance degradation</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Special Issue of the ACML 2023</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Hao-Yuan</creatorcontrib><creatorcontrib>Dai, Wang-Zhou</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Hao-Yuan</au><au>Dai, Wang-Zhou</au><au>Li, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced implication-bias logic loss for neuro-symbolic learning</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>113</volume><issue>6</issue><spage>3357</spage><epage>3377</epage><pages>3357-3377</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Integrating logical reasoning and machine learning by approximating logical inference with differentiable operators is a widely used technique in the field of Neuro-Symbolic Learning. However, some differentiable operators could introduce significant biases during backpropagation, which can degrade the performance of Neuro-Symbolic systems. In this paper, we demonstrate that the loss functions derived from fuzzy logic operators commonly exhibit a bias, referred to as Implication Bias . To mitigate this bias, we propose a simple yet efficient method to transform the biased loss functions into Reduced Implication-bias Logic Loss (RILL) . Empirical studies demonstrate that RILL outperforms the biased logic loss functions, especially when the knowledge base is incomplete or the supervised training data is insufficient.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-023-06436-4</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2024-06, Vol.113 (6), p.3357-3377
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_3053350364
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Back propagation
Bias
Cognition & reasoning
Computer Science
Control
Fuzzy logic
Knowledge
Knowledge bases (artificial intelligence)
Logic programming
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Neural networks
Operators
Performance degradation
Robotics
Simulation and Modeling
Special Issue of the ACML 2023
title Reduced implication-bias logic loss for neuro-symbolic learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20implication-bias%20logic%20loss%20for%20neuro-symbolic%20learning&rft.jtitle=Machine%20learning&rft.au=He,%20Hao-Yuan&rft.date=2024-06-01&rft.volume=113&rft.issue=6&rft.spage=3357&rft.epage=3377&rft.pages=3357-3377&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-023-06436-4&rft_dat=%3Cproquest_cross%3E3053350364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053350364&rft_id=info:pmid/&rfr_iscdi=true