Temporal stacking of sub-pixel offset tracking for monitoring slow-moving landslides in vegetated terrain

Monitoring slow-moving landslides in densely vegetated areas using X-band Synthetic Aperture Radar (SAR) data posed challenges due to the dramatic loss of coherence during SAR interferometry and the relative lower precision of sub-pixel offset tracking (SPOT). The mountainous Three Gorges Reservoir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landslides 2024-06, Vol.21 (6), p.1255-1271
Hauptverfasser: Chang, Fengnian, Dong, Shaochun, Yin, Hongwei, Ye, Xiao, Zhang, Wei, Zhu, Honghu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1271
container_issue 6
container_start_page 1255
container_title Landslides
container_volume 21
creator Chang, Fengnian
Dong, Shaochun
Yin, Hongwei
Ye, Xiao
Zhang, Wei
Zhu, Honghu
description Monitoring slow-moving landslides in densely vegetated areas using X-band Synthetic Aperture Radar (SAR) data posed challenges due to the dramatic loss of coherence during SAR interferometry and the relative lower precision of sub-pixel offset tracking (SPOT). The mountainous Three Gorges Reservoir Area (TGRA) in China is a landslide-prone region with unique hydrogeological conditions, where riparian slopes are mostly covered with dense vegetation. Here, we explore the potential of utilizing temporal stacking to improve SPOT (TS-SPOT) for mitigating background noise and enhancing the continuous deformation signal of natural scatterers on densely vegetated slopes. By leveraging redundant information in multiple offset maps, TS-SPOT demonstrates enhanced measurement capability, offering more precise velocity estimations and extended velocity field coverage than single pair-wise SPOT. The ability of the proposed method is illustrated for two large-scale, slow-moving reservoir landslides in the TGRA, the Outang and Xinpu landslides, for which TerraSAR-X High-resolution Spotlight (TSX-HS) images and GNSS measurements, and ground truth data are available. The monitoring results revealed a maximum of 40 and 10 cm/year average deformation rates along the azimuth and range direction, respectively. This study demonstrates a powerful and efficient method for monitoring slow-moving landslides in vegetated terrain.
doi_str_mv 10.1007/s10346-024-02227-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053347630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053347630</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-9ca13edce2d2f8369abc928e48ebda2b6f4f101ca55c27c5b4ea07930d489bb23</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0Xzt11GKX1DwUsFbyGYnJXV3syZp1X_vri168zDMPOa9N8xD6JLRa0ZpcRMZFTInlMuxOC9IcYRmLGecZIyVx78zfT1FZzFuKOUVFdUMuRV0gw-6xTFp8-b6NfYWx21NBvcJ7QhshIRTOCytD7jzvUs-TDC2_oN0fjfNre6b2LoGInY93sEakk7Q4AQhaNefoxOr2wgXhz5HL_d3q8UjWT4_PC1ul0QLyROpjGYCGgO84bYUeaVrU_ESZAl1o3mdW2kZZUZnmeGFyWoJmhaVoI0sq7rmYo6u9r5D8O9biElt_Db040klaCaELHJBRxbfs0zwMQawagiu0-FLMaqmSNU-UjVGqn4iVcUoEntRHKbvIfxZ_6P6BntQe_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053347630</pqid></control><display><type>article</type><title>Temporal stacking of sub-pixel offset tracking for monitoring slow-moving landslides in vegetated terrain</title><source>Springer Nature - Complete Springer Journals</source><creator>Chang, Fengnian ; Dong, Shaochun ; Yin, Hongwei ; Ye, Xiao ; Zhang, Wei ; Zhu, Honghu</creator><creatorcontrib>Chang, Fengnian ; Dong, Shaochun ; Yin, Hongwei ; Ye, Xiao ; Zhang, Wei ; Zhu, Honghu</creatorcontrib><description>Monitoring slow-moving landslides in densely vegetated areas using X-band Synthetic Aperture Radar (SAR) data posed challenges due to the dramatic loss of coherence during SAR interferometry and the relative lower precision of sub-pixel offset tracking (SPOT). The mountainous Three Gorges Reservoir Area (TGRA) in China is a landslide-prone region with unique hydrogeological conditions, where riparian slopes are mostly covered with dense vegetation. Here, we explore the potential of utilizing temporal stacking to improve SPOT (TS-SPOT) for mitigating background noise and enhancing the continuous deformation signal of natural scatterers on densely vegetated slopes. By leveraging redundant information in multiple offset maps, TS-SPOT demonstrates enhanced measurement capability, offering more precise velocity estimations and extended velocity field coverage than single pair-wise SPOT. The ability of the proposed method is illustrated for two large-scale, slow-moving reservoir landslides in the TGRA, the Outang and Xinpu landslides, for which TerraSAR-X High-resolution Spotlight (TSX-HS) images and GNSS measurements, and ground truth data are available. The monitoring results revealed a maximum of 40 and 10 cm/year average deformation rates along the azimuth and range direction, respectively. This study demonstrates a powerful and efficient method for monitoring slow-moving landslides in vegetated terrain.</description><identifier>ISSN: 1612-510X</identifier><identifier>EISSN: 1612-5118</identifier><identifier>DOI: 10.1007/s10346-024-02227-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Ambient noise ; Azimuth ; Background noise ; Canyons ; Civil Engineering ; Deformation ; Earth and Environmental Science ; Earth Sciences ; Geography ; Geology ; Hydrogeology ; Image resolution ; Interferometry ; Landslides ; Landslides &amp; mudslides ; Monitoring ; Monitoring methods ; Natural Hazards ; Original Paper ; Pixels ; Radar data ; Reservoirs ; SAR (radar) ; Superhigh frequencies ; Synthetic aperture radar ; Synthetic aperture radar interferometry ; Terrain ; Tracking ; Vegetation ; Velocity ; Velocity distribution</subject><ispartof>Landslides, 2024-06, Vol.21 (6), p.1255-1271</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-9ca13edce2d2f8369abc928e48ebda2b6f4f101ca55c27c5b4ea07930d489bb23</citedby><cites>FETCH-LOGICAL-a342t-9ca13edce2d2f8369abc928e48ebda2b6f4f101ca55c27c5b4ea07930d489bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10346-024-02227-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10346-024-02227-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chang, Fengnian</creatorcontrib><creatorcontrib>Dong, Shaochun</creatorcontrib><creatorcontrib>Yin, Hongwei</creatorcontrib><creatorcontrib>Ye, Xiao</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhu, Honghu</creatorcontrib><title>Temporal stacking of sub-pixel offset tracking for monitoring slow-moving landslides in vegetated terrain</title><title>Landslides</title><addtitle>Landslides</addtitle><description>Monitoring slow-moving landslides in densely vegetated areas using X-band Synthetic Aperture Radar (SAR) data posed challenges due to the dramatic loss of coherence during SAR interferometry and the relative lower precision of sub-pixel offset tracking (SPOT). The mountainous Three Gorges Reservoir Area (TGRA) in China is a landslide-prone region with unique hydrogeological conditions, where riparian slopes are mostly covered with dense vegetation. Here, we explore the potential of utilizing temporal stacking to improve SPOT (TS-SPOT) for mitigating background noise and enhancing the continuous deformation signal of natural scatterers on densely vegetated slopes. By leveraging redundant information in multiple offset maps, TS-SPOT demonstrates enhanced measurement capability, offering more precise velocity estimations and extended velocity field coverage than single pair-wise SPOT. The ability of the proposed method is illustrated for two large-scale, slow-moving reservoir landslides in the TGRA, the Outang and Xinpu landslides, for which TerraSAR-X High-resolution Spotlight (TSX-HS) images and GNSS measurements, and ground truth data are available. The monitoring results revealed a maximum of 40 and 10 cm/year average deformation rates along the azimuth and range direction, respectively. This study demonstrates a powerful and efficient method for monitoring slow-moving landslides in vegetated terrain.</description><subject>Agriculture</subject><subject>Ambient noise</subject><subject>Azimuth</subject><subject>Background noise</subject><subject>Canyons</subject><subject>Civil Engineering</subject><subject>Deformation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geography</subject><subject>Geology</subject><subject>Hydrogeology</subject><subject>Image resolution</subject><subject>Interferometry</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Pixels</subject><subject>Radar data</subject><subject>Reservoirs</subject><subject>SAR (radar)</subject><subject>Superhigh frequencies</subject><subject>Synthetic aperture radar</subject><subject>Synthetic aperture radar interferometry</subject><subject>Terrain</subject><subject>Tracking</subject><subject>Vegetation</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1612-510X</issn><issn>1612-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0Xzt11GKX1DwUsFbyGYnJXV3syZp1X_vri168zDMPOa9N8xD6JLRa0ZpcRMZFTInlMuxOC9IcYRmLGecZIyVx78zfT1FZzFuKOUVFdUMuRV0gw-6xTFp8-b6NfYWx21NBvcJ7QhshIRTOCytD7jzvUs-TDC2_oN0fjfNre6b2LoGInY93sEakk7Q4AQhaNefoxOr2wgXhz5HL_d3q8UjWT4_PC1ul0QLyROpjGYCGgO84bYUeaVrU_ESZAl1o3mdW2kZZUZnmeGFyWoJmhaVoI0sq7rmYo6u9r5D8O9biElt_Db040klaCaELHJBRxbfs0zwMQawagiu0-FLMaqmSNU-UjVGqn4iVcUoEntRHKbvIfxZ_6P6BntQe_8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chang, Fengnian</creator><creator>Dong, Shaochun</creator><creator>Yin, Hongwei</creator><creator>Ye, Xiao</creator><creator>Zhang, Wei</creator><creator>Zhu, Honghu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20240601</creationdate><title>Temporal stacking of sub-pixel offset tracking for monitoring slow-moving landslides in vegetated terrain</title><author>Chang, Fengnian ; Dong, Shaochun ; Yin, Hongwei ; Ye, Xiao ; Zhang, Wei ; Zhu, Honghu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-9ca13edce2d2f8369abc928e48ebda2b6f4f101ca55c27c5b4ea07930d489bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Ambient noise</topic><topic>Azimuth</topic><topic>Background noise</topic><topic>Canyons</topic><topic>Civil Engineering</topic><topic>Deformation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geography</topic><topic>Geology</topic><topic>Hydrogeology</topic><topic>Image resolution</topic><topic>Interferometry</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Pixels</topic><topic>Radar data</topic><topic>Reservoirs</topic><topic>SAR (radar)</topic><topic>Superhigh frequencies</topic><topic>Synthetic aperture radar</topic><topic>Synthetic aperture radar interferometry</topic><topic>Terrain</topic><topic>Tracking</topic><topic>Vegetation</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Fengnian</creatorcontrib><creatorcontrib>Dong, Shaochun</creatorcontrib><creatorcontrib>Yin, Hongwei</creatorcontrib><creatorcontrib>Ye, Xiao</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhu, Honghu</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Landslides</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Fengnian</au><au>Dong, Shaochun</au><au>Yin, Hongwei</au><au>Ye, Xiao</au><au>Zhang, Wei</au><au>Zhu, Honghu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal stacking of sub-pixel offset tracking for monitoring slow-moving landslides in vegetated terrain</atitle><jtitle>Landslides</jtitle><stitle>Landslides</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>1255</spage><epage>1271</epage><pages>1255-1271</pages><issn>1612-510X</issn><eissn>1612-5118</eissn><abstract>Monitoring slow-moving landslides in densely vegetated areas using X-band Synthetic Aperture Radar (SAR) data posed challenges due to the dramatic loss of coherence during SAR interferometry and the relative lower precision of sub-pixel offset tracking (SPOT). The mountainous Three Gorges Reservoir Area (TGRA) in China is a landslide-prone region with unique hydrogeological conditions, where riparian slopes are mostly covered with dense vegetation. Here, we explore the potential of utilizing temporal stacking to improve SPOT (TS-SPOT) for mitigating background noise and enhancing the continuous deformation signal of natural scatterers on densely vegetated slopes. By leveraging redundant information in multiple offset maps, TS-SPOT demonstrates enhanced measurement capability, offering more precise velocity estimations and extended velocity field coverage than single pair-wise SPOT. The ability of the proposed method is illustrated for two large-scale, slow-moving reservoir landslides in the TGRA, the Outang and Xinpu landslides, for which TerraSAR-X High-resolution Spotlight (TSX-HS) images and GNSS measurements, and ground truth data are available. The monitoring results revealed a maximum of 40 and 10 cm/year average deformation rates along the azimuth and range direction, respectively. This study demonstrates a powerful and efficient method for monitoring slow-moving landslides in vegetated terrain.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10346-024-02227-7</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-510X
ispartof Landslides, 2024-06, Vol.21 (6), p.1255-1271
issn 1612-510X
1612-5118
language eng
recordid cdi_proquest_journals_3053347630
source Springer Nature - Complete Springer Journals
subjects Agriculture
Ambient noise
Azimuth
Background noise
Canyons
Civil Engineering
Deformation
Earth and Environmental Science
Earth Sciences
Geography
Geology
Hydrogeology
Image resolution
Interferometry
Landslides
Landslides & mudslides
Monitoring
Monitoring methods
Natural Hazards
Original Paper
Pixels
Radar data
Reservoirs
SAR (radar)
Superhigh frequencies
Synthetic aperture radar
Synthetic aperture radar interferometry
Terrain
Tracking
Vegetation
Velocity
Velocity distribution
title Temporal stacking of sub-pixel offset tracking for monitoring slow-moving landslides in vegetated terrain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20stacking%20of%20sub-pixel%20offset%20tracking%20for%20monitoring%20slow-moving%20landslides%20in%20vegetated%20terrain&rft.jtitle=Landslides&rft.au=Chang,%20Fengnian&rft.date=2024-06-01&rft.volume=21&rft.issue=6&rft.spage=1255&rft.epage=1271&rft.pages=1255-1271&rft.issn=1612-510X&rft.eissn=1612-5118&rft_id=info:doi/10.1007/s10346-024-02227-7&rft_dat=%3Cproquest_cross%3E3053347630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053347630&rft_id=info:pmid/&rfr_iscdi=true