Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction

In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning 0.55~\mu m to 3.50~\mu m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.64727-64735
Hauptverfasser: Al Mahfuz, Mohammad, Afroj, Sumaiya, Rahman, Afiquer, Azad Hossain, Md, Anwar Hossain, Md, Habib, Md Selim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64735
container_issue
container_start_page 64727
container_title IEEE access
container_volume 12
creator Al Mahfuz, Mohammad
Afroj, Sumaiya
Rahman, Afiquer
Azad Hossain, Md
Anwar Hossain, Md
Habib, Md Selim
description In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning 0.55~\mu m to 3.50~\mu m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about 8.13\times 10^{-7} RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy ( R^{2} ) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.
doi_str_mv 10.1109/ACCESS.2024.3395390
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053298956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10510458</ieee_id><doaj_id>oai_doaj_org_article_ec80ee22311f49eda28714aa6cc8ef5a</doaj_id><sourcerecordid>3053298956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</originalsourceid><addsrcrecordid>eNpNkc9uEzEQxlcIJKrSJ4CDJc4b7PWfXXMLIYVIkagSytWatcfB0cYb7C1SH4D3xmEr1LnMaGZ-32j0VdVbRheMUf1huVqt9_tFQxux4FxLrumL6qphStdccvXyWf26usn5SEt0pSXbq-rP_TAlqPcYc5jCbyQ_Qg79gPVmR3YQD0huQ4-JfIKMjtwNkE9jDJZcgDF9JMsyj2HCej3gCeNElhGGxxwygejIZ8Qz2SKkGOKBLM_nNIL9SfyYyG5D7hK6YKcwxjfVKw9DxpunfF3d366_r77W229fNqvltraC6qnWHlnvBBfA2r6lwnvVOd8oBRp7JoCqlmmnvJBNr3wHaKkU2jVdWwCQjl9Xm1nXjXA05xROkB7NCMH8a4zpYCBNwQ5o0HYUsWk4Y15odFBUyglQ1nboJRSt97NWeerXA-bJHMeHVL7PhlPJG91pqcoWn7dsGnNO6P9fZdRc7DOzfeZin3myr1DvZiog4jNCMipkx_8CEPGWnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053298956</pqid></control><display><type>article</type><title>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Al Mahfuz, Mohammad ; Afroj, Sumaiya ; Rahman, Afiquer ; Azad Hossain, Md ; Anwar Hossain, Md ; Habib, Md Selim</creator><creatorcontrib>Al Mahfuz, Mohammad ; Afroj, Sumaiya ; Rahman, Afiquer ; Azad Hossain, Md ; Anwar Hossain, Md ; Habib, Md Selim</creatorcontrib><description><![CDATA[In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning <inline-formula> <tex-math notation="LaTeX">0.55~\mu </tex-math></inline-formula>m to <inline-formula> <tex-math notation="LaTeX">3.50~\mu </tex-math></inline-formula>m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about <inline-formula> <tex-math notation="LaTeX">8.13\times 10^{-7} </tex-math></inline-formula> RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3395390</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>artificial neural network ; Artificial neural networks ; Computer simulation ; Couplings ; Crystal fibers ; Deep learning ; Extreme values ; Figure of merit ; Finite element method ; Machine learning ; Optical fiber sensors ; Photonic crystal fiber ; Photonic crystals ; Refractive index ; Refractivity ; Resonance ; Sensitivity ; sensor ; Sensors ; Surface plasmon resonance ; Surface plasmons</subject><ispartof>IEEE access, 2024, Vol.12, p.64727-64735</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</citedby><cites>FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</cites><orcidid>0000-0003-2900-5350 ; 0000-0003-0161-5325 ; 0000-0002-8251-5168 ; 0009-0009-4138-2088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10510458$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Al Mahfuz, Mohammad</creatorcontrib><creatorcontrib>Afroj, Sumaiya</creatorcontrib><creatorcontrib>Rahman, Afiquer</creatorcontrib><creatorcontrib>Azad Hossain, Md</creatorcontrib><creatorcontrib>Anwar Hossain, Md</creatorcontrib><creatorcontrib>Habib, Md Selim</creatorcontrib><title>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning <inline-formula> <tex-math notation="LaTeX">0.55~\mu </tex-math></inline-formula>m to <inline-formula> <tex-math notation="LaTeX">3.50~\mu </tex-math></inline-formula>m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about <inline-formula> <tex-math notation="LaTeX">8.13\times 10^{-7} </tex-math></inline-formula> RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.]]></description><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Crystal fibers</subject><subject>Deep learning</subject><subject>Extreme values</subject><subject>Figure of merit</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Optical fiber sensors</subject><subject>Photonic crystal fiber</subject><subject>Photonic crystals</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Resonance</subject><subject>Sensitivity</subject><subject>sensor</subject><subject>Sensors</subject><subject>Surface plasmon resonance</subject><subject>Surface plasmons</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9uEzEQxlcIJKrSJ4CDJc4b7PWfXXMLIYVIkagSytWatcfB0cYb7C1SH4D3xmEr1LnMaGZ-32j0VdVbRheMUf1huVqt9_tFQxux4FxLrumL6qphStdccvXyWf26usn5SEt0pSXbq-rP_TAlqPcYc5jCbyQ_Qg79gPVmR3YQD0huQ4-JfIKMjtwNkE9jDJZcgDF9JMsyj2HCej3gCeNElhGGxxwygejIZ8Qz2SKkGOKBLM_nNIL9SfyYyG5D7hK6YKcwxjfVKw9DxpunfF3d366_r77W229fNqvltraC6qnWHlnvBBfA2r6lwnvVOd8oBRp7JoCqlmmnvJBNr3wHaKkU2jVdWwCQjl9Xm1nXjXA05xROkB7NCMH8a4zpYCBNwQ5o0HYUsWk4Y15odFBUyglQ1nboJRSt97NWeerXA-bJHMeHVL7PhlPJG91pqcoWn7dsGnNO6P9fZdRc7DOzfeZin3myr1DvZiog4jNCMipkx_8CEPGWnw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Al Mahfuz, Mohammad</creator><creator>Afroj, Sumaiya</creator><creator>Rahman, Afiquer</creator><creator>Azad Hossain, Md</creator><creator>Anwar Hossain, Md</creator><creator>Habib, Md Selim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2900-5350</orcidid><orcidid>https://orcid.org/0000-0003-0161-5325</orcidid><orcidid>https://orcid.org/0000-0002-8251-5168</orcidid><orcidid>https://orcid.org/0009-0009-4138-2088</orcidid></search><sort><creationdate>2024</creationdate><title>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</title><author>Al Mahfuz, Mohammad ; Afroj, Sumaiya ; Rahman, Afiquer ; Azad Hossain, Md ; Anwar Hossain, Md ; Habib, Md Selim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Crystal fibers</topic><topic>Deep learning</topic><topic>Extreme values</topic><topic>Figure of merit</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Optical fiber sensors</topic><topic>Photonic crystal fiber</topic><topic>Photonic crystals</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Resonance</topic><topic>Sensitivity</topic><topic>sensor</topic><topic>Sensors</topic><topic>Surface plasmon resonance</topic><topic>Surface plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Mahfuz, Mohammad</creatorcontrib><creatorcontrib>Afroj, Sumaiya</creatorcontrib><creatorcontrib>Rahman, Afiquer</creatorcontrib><creatorcontrib>Azad Hossain, Md</creatorcontrib><creatorcontrib>Anwar Hossain, Md</creatorcontrib><creatorcontrib>Habib, Md Selim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Mahfuz, Mohammad</au><au>Afroj, Sumaiya</au><au>Rahman, Afiquer</au><au>Azad Hossain, Md</au><au>Anwar Hossain, Md</au><au>Habib, Md Selim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>64727</spage><epage>64735</epage><pages>64727-64735</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning <inline-formula> <tex-math notation="LaTeX">0.55~\mu </tex-math></inline-formula>m to <inline-formula> <tex-math notation="LaTeX">3.50~\mu </tex-math></inline-formula>m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about <inline-formula> <tex-math notation="LaTeX">8.13\times 10^{-7} </tex-math></inline-formula> RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3395390</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2900-5350</orcidid><orcidid>https://orcid.org/0000-0003-0161-5325</orcidid><orcidid>https://orcid.org/0000-0002-8251-5168</orcidid><orcidid>https://orcid.org/0009-0009-4138-2088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.64727-64735
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3053298956
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects artificial neural network
Artificial neural networks
Computer simulation
Couplings
Crystal fibers
Deep learning
Extreme values
Figure of merit
Finite element method
Machine learning
Optical fiber sensors
Photonic crystal fiber
Photonic crystals
Refractive index
Refractivity
Resonance
Sensitivity
sensor
Sensors
Surface plasmon resonance
Surface plasmons
title Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Sensitive%20Visible-IR%20Range%20Fiber%20Based%20Plasmonic%20Sensor:%20A%20Finite-Element%20Analysis%20and%20Deep%20Learning%20Approach%20for%20RI%20Prediction&rft.jtitle=IEEE%20access&rft.au=Al%20Mahfuz,%20Mohammad&rft.date=2024&rft.volume=12&rft.spage=64727&rft.epage=64735&rft.pages=64727-64735&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3395390&rft_dat=%3Cproquest_cross%3E3053298956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053298956&rft_id=info:pmid/&rft_ieee_id=10510458&rft_doaj_id=oai_doaj_org_article_ec80ee22311f49eda28714aa6cc8ef5a&rfr_iscdi=true