Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction
In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning 0.55~\mu m to 3.50~\mu m...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.64727-64735 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64735 |
---|---|
container_issue | |
container_start_page | 64727 |
container_title | IEEE access |
container_volume | 12 |
creator | Al Mahfuz, Mohammad Afroj, Sumaiya Rahman, Afiquer Azad Hossain, Md Anwar Hossain, Md Habib, Md Selim |
description | In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning 0.55~\mu m to 3.50~\mu m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about 8.13\times 10^{-7} RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy ( R^{2} ) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans. |
doi_str_mv | 10.1109/ACCESS.2024.3395390 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053298956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10510458</ieee_id><doaj_id>oai_doaj_org_article_ec80ee22311f49eda28714aa6cc8ef5a</doaj_id><sourcerecordid>3053298956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</originalsourceid><addsrcrecordid>eNpNkc9uEzEQxlcIJKrSJ4CDJc4b7PWfXXMLIYVIkagSytWatcfB0cYb7C1SH4D3xmEr1LnMaGZ-32j0VdVbRheMUf1huVqt9_tFQxux4FxLrumL6qphStdccvXyWf26usn5SEt0pSXbq-rP_TAlqPcYc5jCbyQ_Qg79gPVmR3YQD0huQ4-JfIKMjtwNkE9jDJZcgDF9JMsyj2HCej3gCeNElhGGxxwygejIZ8Qz2SKkGOKBLM_nNIL9SfyYyG5D7hK6YKcwxjfVKw9DxpunfF3d366_r77W229fNqvltraC6qnWHlnvBBfA2r6lwnvVOd8oBRp7JoCqlmmnvJBNr3wHaKkU2jVdWwCQjl9Xm1nXjXA05xROkB7NCMH8a4zpYCBNwQ5o0HYUsWk4Y15odFBUyglQ1nboJRSt97NWeerXA-bJHMeHVL7PhlPJG91pqcoWn7dsGnNO6P9fZdRc7DOzfeZin3myr1DvZiog4jNCMipkx_8CEPGWnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053298956</pqid></control><display><type>article</type><title>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Al Mahfuz, Mohammad ; Afroj, Sumaiya ; Rahman, Afiquer ; Azad Hossain, Md ; Anwar Hossain, Md ; Habib, Md Selim</creator><creatorcontrib>Al Mahfuz, Mohammad ; Afroj, Sumaiya ; Rahman, Afiquer ; Azad Hossain, Md ; Anwar Hossain, Md ; Habib, Md Selim</creatorcontrib><description><![CDATA[In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning <inline-formula> <tex-math notation="LaTeX">0.55~\mu </tex-math></inline-formula>m to <inline-formula> <tex-math notation="LaTeX">3.50~\mu </tex-math></inline-formula>m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about <inline-formula> <tex-math notation="LaTeX">8.13\times 10^{-7} </tex-math></inline-formula> RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3395390</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>artificial neural network ; Artificial neural networks ; Computer simulation ; Couplings ; Crystal fibers ; Deep learning ; Extreme values ; Figure of merit ; Finite element method ; Machine learning ; Optical fiber sensors ; Photonic crystal fiber ; Photonic crystals ; Refractive index ; Refractivity ; Resonance ; Sensitivity ; sensor ; Sensors ; Surface plasmon resonance ; Surface plasmons</subject><ispartof>IEEE access, 2024, Vol.12, p.64727-64735</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</citedby><cites>FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</cites><orcidid>0000-0003-2900-5350 ; 0000-0003-0161-5325 ; 0000-0002-8251-5168 ; 0009-0009-4138-2088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10510458$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Al Mahfuz, Mohammad</creatorcontrib><creatorcontrib>Afroj, Sumaiya</creatorcontrib><creatorcontrib>Rahman, Afiquer</creatorcontrib><creatorcontrib>Azad Hossain, Md</creatorcontrib><creatorcontrib>Anwar Hossain, Md</creatorcontrib><creatorcontrib>Habib, Md Selim</creatorcontrib><title>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning <inline-formula> <tex-math notation="LaTeX">0.55~\mu </tex-math></inline-formula>m to <inline-formula> <tex-math notation="LaTeX">3.50~\mu </tex-math></inline-formula>m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about <inline-formula> <tex-math notation="LaTeX">8.13\times 10^{-7} </tex-math></inline-formula> RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.]]></description><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Crystal fibers</subject><subject>Deep learning</subject><subject>Extreme values</subject><subject>Figure of merit</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Optical fiber sensors</subject><subject>Photonic crystal fiber</subject><subject>Photonic crystals</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Resonance</subject><subject>Sensitivity</subject><subject>sensor</subject><subject>Sensors</subject><subject>Surface plasmon resonance</subject><subject>Surface plasmons</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9uEzEQxlcIJKrSJ4CDJc4b7PWfXXMLIYVIkagSytWatcfB0cYb7C1SH4D3xmEr1LnMaGZ-32j0VdVbRheMUf1huVqt9_tFQxux4FxLrumL6qphStdccvXyWf26usn5SEt0pSXbq-rP_TAlqPcYc5jCbyQ_Qg79gPVmR3YQD0huQ4-JfIKMjtwNkE9jDJZcgDF9JMsyj2HCej3gCeNElhGGxxwygejIZ8Qz2SKkGOKBLM_nNIL9SfyYyG5D7hK6YKcwxjfVKw9DxpunfF3d366_r77W229fNqvltraC6qnWHlnvBBfA2r6lwnvVOd8oBRp7JoCqlmmnvJBNr3wHaKkU2jVdWwCQjl9Xm1nXjXA05xROkB7NCMH8a4zpYCBNwQ5o0HYUsWk4Y15odFBUyglQ1nboJRSt97NWeerXA-bJHMeHVL7PhlPJG91pqcoWn7dsGnNO6P9fZdRc7DOzfeZin3myr1DvZiog4jNCMipkx_8CEPGWnw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Al Mahfuz, Mohammad</creator><creator>Afroj, Sumaiya</creator><creator>Rahman, Afiquer</creator><creator>Azad Hossain, Md</creator><creator>Anwar Hossain, Md</creator><creator>Habib, Md Selim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2900-5350</orcidid><orcidid>https://orcid.org/0000-0003-0161-5325</orcidid><orcidid>https://orcid.org/0000-0002-8251-5168</orcidid><orcidid>https://orcid.org/0009-0009-4138-2088</orcidid></search><sort><creationdate>2024</creationdate><title>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</title><author>Al Mahfuz, Mohammad ; Afroj, Sumaiya ; Rahman, Afiquer ; Azad Hossain, Md ; Anwar Hossain, Md ; Habib, Md Selim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9fe1bd434a17b704ff68df266a9eb14a06719d6f452b6f8aec0549d287a17a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Crystal fibers</topic><topic>Deep learning</topic><topic>Extreme values</topic><topic>Figure of merit</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Optical fiber sensors</topic><topic>Photonic crystal fiber</topic><topic>Photonic crystals</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Resonance</topic><topic>Sensitivity</topic><topic>sensor</topic><topic>Sensors</topic><topic>Surface plasmon resonance</topic><topic>Surface plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Mahfuz, Mohammad</creatorcontrib><creatorcontrib>Afroj, Sumaiya</creatorcontrib><creatorcontrib>Rahman, Afiquer</creatorcontrib><creatorcontrib>Azad Hossain, Md</creatorcontrib><creatorcontrib>Anwar Hossain, Md</creatorcontrib><creatorcontrib>Habib, Md Selim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Mahfuz, Mohammad</au><au>Afroj, Sumaiya</au><au>Rahman, Afiquer</au><au>Azad Hossain, Md</au><au>Anwar Hossain, Md</au><au>Habib, Md Selim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>64727</spage><epage>64735</epage><pages>64727-64735</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning <inline-formula> <tex-math notation="LaTeX">0.55~\mu </tex-math></inline-formula>m to <inline-formula> <tex-math notation="LaTeX">3.50~\mu </tex-math></inline-formula>m. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU1, respectively, and extremely low value of wavelength resolution (WR) about <inline-formula> <tex-math notation="LaTeX">8.13\times 10^{-7} </tex-math></inline-formula> RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities, the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3395390</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2900-5350</orcidid><orcidid>https://orcid.org/0000-0003-0161-5325</orcidid><orcidid>https://orcid.org/0000-0002-8251-5168</orcidid><orcidid>https://orcid.org/0009-0009-4138-2088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.64727-64735 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3053298956 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | artificial neural network Artificial neural networks Computer simulation Couplings Crystal fibers Deep learning Extreme values Figure of merit Finite element method Machine learning Optical fiber sensors Photonic crystal fiber Photonic crystals Refractive index Refractivity Resonance Sensitivity sensor Sensors Surface plasmon resonance Surface plasmons |
title | Ultra-Sensitive Visible-IR Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis and Deep Learning Approach for RI Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Sensitive%20Visible-IR%20Range%20Fiber%20Based%20Plasmonic%20Sensor:%20A%20Finite-Element%20Analysis%20and%20Deep%20Learning%20Approach%20for%20RI%20Prediction&rft.jtitle=IEEE%20access&rft.au=Al%20Mahfuz,%20Mohammad&rft.date=2024&rft.volume=12&rft.spage=64727&rft.epage=64735&rft.pages=64727-64735&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3395390&rft_dat=%3Cproquest_cross%3E3053298956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053298956&rft_id=info:pmid/&rft_ieee_id=10510458&rft_doaj_id=oai_doaj_org_article_ec80ee22311f49eda28714aa6cc8ef5a&rfr_iscdi=true |