Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks

Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-05, Vol.13 (5), p.1349-1353
Hauptverfasser: Yao, Xianghao, An, Jiancheng, Gan, Lu, Di Renzo, Marco, Yuen, Chau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1353
container_issue 5
container_start_page 1349
container_title IEEE wireless communications letters
container_volume 13
creator Yao, Xianghao
An, Jiancheng
Gan, Lu
Di Renzo, Marco
Yuen, Chau
description Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes.
doi_str_mv 10.1109/LWC.2024.3369874
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3053298001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445164</ieee_id><sourcerecordid>3053298001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-61c1efeb714a7b285ded5468638736162b5a18c9675223447648d3abf6383efb3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNTePXgIePKQul_Z3RxLqbYQFVHpcdkkE5s2JnV3q_jfuyFFnMsMw-8Nbx5ClwRPCcHpbbaeTymmfMqYSJXkJ2hEiaAxZTw5_ZuZPEcT57Y4lMCEEjVCz_ONaVtoooXz9YfxdddGVWejF2-KHZTRqvXQNPU7tD56AG_cwVamgHjmXO18ANa1hQacix7Bf3d25y7QWWUaB5NjH6O3u8XrfBlnT_er-SyLC0aJjwUpCFSQS8KNzKlKSigTLpRgSjIRDOeJIapIhUxoeINLwVXJTF4FgEGVszG6Ge5uTKP3Npi3P7oztV7OMt3vMJeMUyq_SGCvB3Zvu88DOK-33cG2wZ5mOGE0VRj3FB6ownbOWaj-zhKs-5x1yFn3OetjzkFyNUhqAPiHc54Qwdkvull3WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053298001</pqid></control><display><type>article</type><title>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Yao, Xianghao ; An, Jiancheng ; Gan, Lu ; Di Renzo, Marco ; Yuen, Chau</creator><creatorcontrib>Yao, Xianghao ; An, Jiancheng ; Gan, Lu ; Di Renzo, Marco ; Yuen, Chau</creatorcontrib><description>Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2024.3369874</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Atomic properties ; Channel estimation ; Computer architecture ; Computer Science ; Correlation ; Correlation analysis ; Electromagnetic radiation ; Energy consumption ; Estimation ; Estimators ; Holographic MIMO ; Metasurfaces ; Probes ; Radio frequency ; Signal and Image Processing ; spatial correlation ; stacked intelligent metasurface (SIM) ; Transmitting antennas ; Wireless communication systems ; Wireless networks</subject><ispartof>IEEE wireless communications letters, 2024-05, Vol.13 (5), p.1349-1353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-61c1efeb714a7b285ded5468638736162b5a18c9675223447648d3abf6383efb3</cites><orcidid>0009-0008-9749-5164 ; 0000-0003-2512-9989 ; 0000-0003-0772-8793 ; 0000-0002-9307-2120 ; 0000-0003-2138-9564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10445164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04734227$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Xianghao</creatorcontrib><creatorcontrib>An, Jiancheng</creatorcontrib><creatorcontrib>Gan, Lu</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><title>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes.</description><subject>Artificial neural networks</subject><subject>Atomic properties</subject><subject>Channel estimation</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Electromagnetic radiation</subject><subject>Energy consumption</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Holographic MIMO</subject><subject>Metasurfaces</subject><subject>Probes</subject><subject>Radio frequency</subject><subject>Signal and Image Processing</subject><subject>spatial correlation</subject><subject>stacked intelligent metasurface (SIM)</subject><subject>Transmitting antennas</subject><subject>Wireless communication systems</subject><subject>Wireless networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsNTePXgIePKQul_Z3RxLqbYQFVHpcdkkE5s2JnV3q_jfuyFFnMsMw-8Nbx5ClwRPCcHpbbaeTymmfMqYSJXkJ2hEiaAxZTw5_ZuZPEcT57Y4lMCEEjVCz_ONaVtoooXz9YfxdddGVWejF2-KHZTRqvXQNPU7tD56AG_cwVamgHjmXO18ANa1hQacix7Bf3d25y7QWWUaB5NjH6O3u8XrfBlnT_er-SyLC0aJjwUpCFSQS8KNzKlKSigTLpRgSjIRDOeJIapIhUxoeINLwVXJTF4FgEGVszG6Ge5uTKP3Npi3P7oztV7OMt3vMJeMUyq_SGCvB3Zvu88DOK-33cG2wZ5mOGE0VRj3FB6ownbOWaj-zhKs-5x1yFn3OetjzkFyNUhqAPiHc54Qwdkvull3WQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yao, Xianghao</creator><creator>An, Jiancheng</creator><creator>Gan, Lu</creator><creator>Di Renzo, Marco</creator><creator>Yuen, Chau</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE comsoc</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0008-9749-5164</orcidid><orcidid>https://orcid.org/0000-0003-2512-9989</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0003-2138-9564</orcidid></search><sort><creationdate>20240501</creationdate><title>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</title><author>Yao, Xianghao ; An, Jiancheng ; Gan, Lu ; Di Renzo, Marco ; Yuen, Chau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-61c1efeb714a7b285ded5468638736162b5a18c9675223447648d3abf6383efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Atomic properties</topic><topic>Channel estimation</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Electromagnetic radiation</topic><topic>Energy consumption</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Holographic MIMO</topic><topic>Metasurfaces</topic><topic>Probes</topic><topic>Radio frequency</topic><topic>Signal and Image Processing</topic><topic>spatial correlation</topic><topic>stacked intelligent metasurface (SIM)</topic><topic>Transmitting antennas</topic><topic>Wireless communication systems</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xianghao</creatorcontrib><creatorcontrib>An, Jiancheng</creatorcontrib><creatorcontrib>Gan, Lu</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yao, Xianghao</au><au>An, Jiancheng</au><au>Gan, Lu</au><au>Di Renzo, Marco</au><au>Yuen, Chau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>5</issue><spage>1349</spage><epage>1353</epage><pages>1349-1353</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2024.3369874</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0008-9749-5164</orcidid><orcidid>https://orcid.org/0000-0003-2512-9989</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0003-2138-9564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2024-05, Vol.13 (5), p.1349-1353
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_3053298001
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Atomic properties
Channel estimation
Computer architecture
Computer Science
Correlation
Correlation analysis
Electromagnetic radiation
Energy consumption
Estimation
Estimators
Holographic MIMO
Metasurfaces
Probes
Radio frequency
Signal and Image Processing
spatial correlation
stacked intelligent metasurface (SIM)
Transmitting antennas
Wireless communication systems
Wireless networks
title Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20Estimation%20for%20Stacked%20Intelligent%20Metasurface-Assisted%20Wireless%20Networks&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Yao,%20Xianghao&rft.date=2024-05-01&rft.volume=13&rft.issue=5&rft.spage=1349&rft.epage=1353&rft.pages=1349-1353&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2024.3369874&rft_dat=%3Cproquest_RIE%3E3053298001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053298001&rft_id=info:pmid/&rft_ieee_id=10445164&rfr_iscdi=true