Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks
Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architect...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2024-05, Vol.13 (5), p.1349-1353 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1353 |
---|---|
container_issue | 5 |
container_start_page | 1349 |
container_title | IEEE wireless communications letters |
container_volume | 13 |
creator | Yao, Xianghao An, Jiancheng Gan, Lu Di Renzo, Marco Yuen, Chau |
description | Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes. |
doi_str_mv | 10.1109/LWC.2024.3369874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3053298001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445164</ieee_id><sourcerecordid>3053298001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-61c1efeb714a7b285ded5468638736162b5a18c9675223447648d3abf6383efb3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNTePXgIePKQul_Z3RxLqbYQFVHpcdkkE5s2JnV3q_jfuyFFnMsMw-8Nbx5ClwRPCcHpbbaeTymmfMqYSJXkJ2hEiaAxZTw5_ZuZPEcT57Y4lMCEEjVCz_ONaVtoooXz9YfxdddGVWejF2-KHZTRqvXQNPU7tD56AG_cwVamgHjmXO18ANa1hQacix7Bf3d25y7QWWUaB5NjH6O3u8XrfBlnT_er-SyLC0aJjwUpCFSQS8KNzKlKSigTLpRgSjIRDOeJIapIhUxoeINLwVXJTF4FgEGVszG6Ge5uTKP3Npi3P7oztV7OMt3vMJeMUyq_SGCvB3Zvu88DOK-33cG2wZ5mOGE0VRj3FB6ownbOWaj-zhKs-5x1yFn3OetjzkFyNUhqAPiHc54Qwdkvull3WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053298001</pqid></control><display><type>article</type><title>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Yao, Xianghao ; An, Jiancheng ; Gan, Lu ; Di Renzo, Marco ; Yuen, Chau</creator><creatorcontrib>Yao, Xianghao ; An, Jiancheng ; Gan, Lu ; Di Renzo, Marco ; Yuen, Chau</creatorcontrib><description>Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2024.3369874</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Atomic properties ; Channel estimation ; Computer architecture ; Computer Science ; Correlation ; Correlation analysis ; Electromagnetic radiation ; Energy consumption ; Estimation ; Estimators ; Holographic MIMO ; Metasurfaces ; Probes ; Radio frequency ; Signal and Image Processing ; spatial correlation ; stacked intelligent metasurface (SIM) ; Transmitting antennas ; Wireless communication systems ; Wireless networks</subject><ispartof>IEEE wireless communications letters, 2024-05, Vol.13 (5), p.1349-1353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-61c1efeb714a7b285ded5468638736162b5a18c9675223447648d3abf6383efb3</cites><orcidid>0009-0008-9749-5164 ; 0000-0003-2512-9989 ; 0000-0003-0772-8793 ; 0000-0002-9307-2120 ; 0000-0003-2138-9564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10445164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04734227$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Xianghao</creatorcontrib><creatorcontrib>An, Jiancheng</creatorcontrib><creatorcontrib>Gan, Lu</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><title>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes.</description><subject>Artificial neural networks</subject><subject>Atomic properties</subject><subject>Channel estimation</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Electromagnetic radiation</subject><subject>Energy consumption</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Holographic MIMO</subject><subject>Metasurfaces</subject><subject>Probes</subject><subject>Radio frequency</subject><subject>Signal and Image Processing</subject><subject>spatial correlation</subject><subject>stacked intelligent metasurface (SIM)</subject><subject>Transmitting antennas</subject><subject>Wireless communication systems</subject><subject>Wireless networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsNTePXgIePKQul_Z3RxLqbYQFVHpcdkkE5s2JnV3q_jfuyFFnMsMw-8Nbx5ClwRPCcHpbbaeTymmfMqYSJXkJ2hEiaAxZTw5_ZuZPEcT57Y4lMCEEjVCz_ONaVtoooXz9YfxdddGVWejF2-KHZTRqvXQNPU7tD56AG_cwVamgHjmXO18ANa1hQacix7Bf3d25y7QWWUaB5NjH6O3u8XrfBlnT_er-SyLC0aJjwUpCFSQS8KNzKlKSigTLpRgSjIRDOeJIapIhUxoeINLwVXJTF4FgEGVszG6Ge5uTKP3Npi3P7oztV7OMt3vMJeMUyq_SGCvB3Zvu88DOK-33cG2wZ5mOGE0VRj3FB6ownbOWaj-zhKs-5x1yFn3OetjzkFyNUhqAPiHc54Qwdkvull3WQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yao, Xianghao</creator><creator>An, Jiancheng</creator><creator>Gan, Lu</creator><creator>Di Renzo, Marco</creator><creator>Yuen, Chau</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE comsoc</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0008-9749-5164</orcidid><orcidid>https://orcid.org/0000-0003-2512-9989</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0003-2138-9564</orcidid></search><sort><creationdate>20240501</creationdate><title>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</title><author>Yao, Xianghao ; An, Jiancheng ; Gan, Lu ; Di Renzo, Marco ; Yuen, Chau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-61c1efeb714a7b285ded5468638736162b5a18c9675223447648d3abf6383efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Atomic properties</topic><topic>Channel estimation</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Electromagnetic radiation</topic><topic>Energy consumption</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Holographic MIMO</topic><topic>Metasurfaces</topic><topic>Probes</topic><topic>Radio frequency</topic><topic>Signal and Image Processing</topic><topic>spatial correlation</topic><topic>stacked intelligent metasurface (SIM)</topic><topic>Transmitting antennas</topic><topic>Wireless communication systems</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xianghao</creatorcontrib><creatorcontrib>An, Jiancheng</creatorcontrib><creatorcontrib>Gan, Lu</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yao, Xianghao</au><au>An, Jiancheng</au><au>Gan, Lu</au><au>Di Renzo, Marco</au><au>Yuen, Chau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>5</issue><spage>1349</spage><epage>1353</epage><pages>1349-1353</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Emerging technologies, such as holographic multiple-input multiple-output (HMIMO) and stacked intelligent metasurface (SIM), are driving the development of wireless communication systems. Specifically, the SIM is physically constructed by stacking multiple layers of metasurfaces and has an architecture similar to an artificial neural network (ANN), which can flexibly manipulate the electromagnetic waves that propagate through it at the speed of light. This architecture enables the SIM to achieve HMIMO precoding and combining in the wave domain, thus significantly reducing the hardware cost and energy consumption. In this letter, we investigate the channel estimation problem in SIM-assisted multi-user HMIMO communication systems. Since the number of antennas at the base station (BS) is much smaller than the number of meta-atoms per layer of the SIM, it is challenging to acquire the channel state information (CSI) in SIM-assisted multi-user systems. To address this issue, we collect multiple copies of the uplink pilot signals that propagate through the SIM. Furthermore, we leverage the array geometry to identify the subspace that spans arbitrary spatial correlation matrices. Based on partial CSI about the channel statistics, a pair of subspace-based channel estimators are proposed. Additionally, we compute the mean square error (MSE) of the proposed channel estimators and optimize the phase shifts of the SIM to minimize the MSE. Numerical results are illustrated to analyze the effectiveness of the proposed channel estimation schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2024.3369874</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0008-9749-5164</orcidid><orcidid>https://orcid.org/0000-0003-2512-9989</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0003-2138-9564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2024-05, Vol.13 (5), p.1349-1353 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_proquest_journals_3053298001 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Atomic properties Channel estimation Computer architecture Computer Science Correlation Correlation analysis Electromagnetic radiation Energy consumption Estimation Estimators Holographic MIMO Metasurfaces Probes Radio frequency Signal and Image Processing spatial correlation stacked intelligent metasurface (SIM) Transmitting antennas Wireless communication systems Wireless networks |
title | Channel Estimation for Stacked Intelligent Metasurface-Assisted Wireless Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20Estimation%20for%20Stacked%20Intelligent%20Metasurface-Assisted%20Wireless%20Networks&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Yao,%20Xianghao&rft.date=2024-05-01&rft.volume=13&rft.issue=5&rft.spage=1349&rft.epage=1353&rft.pages=1349-1353&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2024.3369874&rft_dat=%3Cproquest_RIE%3E3053298001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053298001&rft_id=info:pmid/&rft_ieee_id=10445164&rfr_iscdi=true |