Joint Scattering Environment Sensing and Channel Estimation Based on Non-Stationary Markov Random Field
This paper considers an integrated sensing and communication system, where some radar targets also serve as communication scatterers. A location domain channel modeling method is proposed based on the position of targets and scatterers in the scattering environment, and the resulting radar and commu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-05, Vol.23 (5), p.3903-3917 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3917 |
---|---|
container_issue | 5 |
container_start_page | 3903 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Xu, Wenkang Xiao, Yongbo Liu, An Lei, Ming Zhao, Min-Jian |
description | This paper considers an integrated sensing and communication system, where some radar targets also serve as communication scatterers. A location domain channel modeling method is proposed based on the position of targets and scatterers in the scattering environment, and the resulting radar and communication channels exhibit a two-dimensional (2-D) joint burst sparsity. We propose a joint scattering environment sensing and channel estimation scheme to enhance the target/scatterer localization and channel estimation performance simultaneously, where a spatially non-stationary Markov random field (MRF) model is proposed to capture the 2-D joint burst sparsity. An expectation maximization (EM) based method is designed to solve the joint estimation problem, where the E-step obtains the Bayesian estimation of the radar and communication channels and the M-step automatically learns the dynamic position grid and prior parameters in the MRF. However, the existing sparse Bayesian inference methods used in the E-step involve a high-complexity matrix inverse per iteration. Moreover, due to the complicated non-stationary MRF prior, the complexity of M-step is exponentially large. To address these difficulties, we propose an inverse-free variational Bayesian inference algorithm for the E-step and a low-complexity method based on pseudo-likelihood approximation for the M-step. In the simulations, the proposed scheme can achieve a better performance than the state-of-the-art method while reducing the computational overhead significantly. |
doi_str_mv | 10.1109/TWC.2023.3312451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3053297857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10250200</ieee_id><sourcerecordid>3053297857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4a17080771747fe5c5a4a6cb9f3e3552299f06fea5f6ea5b8ee25a0bfe80b2423</originalsourceid><addsrcrecordid>eNpNUE1PAjEUbIwmInr34KGJ58V-bLe7RyXgR1ATwXhsussrLkKrbSHh39sVDl7em0xm3scgdEnJgFJS3cw-hgNGGB9wTlku6BHqUSHKjLG8PO4wLzLKZHGKzkJYEkJlIUQPLZ5cayOeNjpG8K1d4JHdtt7ZNXQ02NBx2s7x8FNbCys8CrFd69g6i-90gDlO4MXZbBr_SO13-Fn7L7fFb8nm1njcwmp-jk6MXgW4OPQ-eh-PZsOHbPJ6_zi8nWRNOjpmuaaSlERKKnNpQDRC57po6spw4EIwVlWGFAa0MEUqdQnAhCa1gZLULGe8j673c7-9-9lAiGrpNt6mlYoTwVklSyGTiuxVjXcheDDq26en_E5Roro4VYpTdXGqQ5zJcrW3tADwT84EYYTwXymucWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053297857</pqid></control><display><type>article</type><title>Joint Scattering Environment Sensing and Channel Estimation Based on Non-Stationary Markov Random Field</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Wenkang ; Xiao, Yongbo ; Liu, An ; Lei, Ming ; Zhao, Min-Jian</creator><creatorcontrib>Xu, Wenkang ; Xiao, Yongbo ; Liu, An ; Lei, Ming ; Zhao, Min-Jian</creatorcontrib><description>This paper considers an integrated sensing and communication system, where some radar targets also serve as communication scatterers. A location domain channel modeling method is proposed based on the position of targets and scatterers in the scattering environment, and the resulting radar and communication channels exhibit a two-dimensional (2-D) joint burst sparsity. We propose a joint scattering environment sensing and channel estimation scheme to enhance the target/scatterer localization and channel estimation performance simultaneously, where a spatially non-stationary Markov random field (MRF) model is proposed to capture the 2-D joint burst sparsity. An expectation maximization (EM) based method is designed to solve the joint estimation problem, where the E-step obtains the Bayesian estimation of the radar and communication channels and the M-step automatically learns the dynamic position grid and prior parameters in the MRF. However, the existing sparse Bayesian inference methods used in the E-step involve a high-complexity matrix inverse per iteration. Moreover, due to the complicated non-stationary MRF prior, the complexity of M-step is exponentially large. To address these difficulties, we propose an inverse-free variational Bayesian inference algorithm for the E-step and a low-complexity method based on pseudo-likelihood approximation for the M-step. In the simulations, the proposed scheme can achieve a better performance than the state-of-the-art method while reducing the computational overhead significantly.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3312451</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Channel estimation ; Channels ; Communication channels ; Communications systems ; Complexity ; Fields (mathematics) ; Hidden Markov models ; Integrated sensing and communication ; inverse-free ; non-stationary Markov random field ; Radar ; Radar scattering ; Radar targets ; Scattering ; scattering environment sensing ; Sensors ; Sparsity ; Statistical inference</subject><ispartof>IEEE transactions on wireless communications, 2024-05, Vol.23 (5), p.3903-3917</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4a17080771747fe5c5a4a6cb9f3e3552299f06fea5f6ea5b8ee25a0bfe80b2423</cites><orcidid>0000-0002-3943-5234 ; 0000-0003-0097-5062 ; 0000-0002-5108-5513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10250200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10250200$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Wenkang</creatorcontrib><creatorcontrib>Xiao, Yongbo</creatorcontrib><creatorcontrib>Liu, An</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><creatorcontrib>Zhao, Min-Jian</creatorcontrib><title>Joint Scattering Environment Sensing and Channel Estimation Based on Non-Stationary Markov Random Field</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper considers an integrated sensing and communication system, where some radar targets also serve as communication scatterers. A location domain channel modeling method is proposed based on the position of targets and scatterers in the scattering environment, and the resulting radar and communication channels exhibit a two-dimensional (2-D) joint burst sparsity. We propose a joint scattering environment sensing and channel estimation scheme to enhance the target/scatterer localization and channel estimation performance simultaneously, where a spatially non-stationary Markov random field (MRF) model is proposed to capture the 2-D joint burst sparsity. An expectation maximization (EM) based method is designed to solve the joint estimation problem, where the E-step obtains the Bayesian estimation of the radar and communication channels and the M-step automatically learns the dynamic position grid and prior parameters in the MRF. However, the existing sparse Bayesian inference methods used in the E-step involve a high-complexity matrix inverse per iteration. Moreover, due to the complicated non-stationary MRF prior, the complexity of M-step is exponentially large. To address these difficulties, we propose an inverse-free variational Bayesian inference algorithm for the E-step and a low-complexity method based on pseudo-likelihood approximation for the M-step. In the simulations, the proposed scheme can achieve a better performance than the state-of-the-art method while reducing the computational overhead significantly.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Communication channels</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Fields (mathematics)</subject><subject>Hidden Markov models</subject><subject>Integrated sensing and communication</subject><subject>inverse-free</subject><subject>non-stationary Markov random field</subject><subject>Radar</subject><subject>Radar scattering</subject><subject>Radar targets</subject><subject>Scattering</subject><subject>scattering environment sensing</subject><subject>Sensors</subject><subject>Sparsity</subject><subject>Statistical inference</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PAjEUbIwmInr34KGJ58V-bLe7RyXgR1ATwXhsussrLkKrbSHh39sVDl7em0xm3scgdEnJgFJS3cw-hgNGGB9wTlku6BHqUSHKjLG8PO4wLzLKZHGKzkJYEkJlIUQPLZ5cayOeNjpG8K1d4JHdtt7ZNXQ02NBx2s7x8FNbCys8CrFd69g6i-90gDlO4MXZbBr_SO13-Fn7L7fFb8nm1njcwmp-jk6MXgW4OPQ-eh-PZsOHbPJ6_zi8nWRNOjpmuaaSlERKKnNpQDRC57po6spw4EIwVlWGFAa0MEUqdQnAhCa1gZLULGe8j673c7-9-9lAiGrpNt6mlYoTwVklSyGTiuxVjXcheDDq26en_E5Roro4VYpTdXGqQ5zJcrW3tADwT84EYYTwXymucWU</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Xu, Wenkang</creator><creator>Xiao, Yongbo</creator><creator>Liu, An</creator><creator>Lei, Ming</creator><creator>Zhao, Min-Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3943-5234</orcidid><orcidid>https://orcid.org/0000-0003-0097-5062</orcidid><orcidid>https://orcid.org/0000-0002-5108-5513</orcidid></search><sort><creationdate>202405</creationdate><title>Joint Scattering Environment Sensing and Channel Estimation Based on Non-Stationary Markov Random Field</title><author>Xu, Wenkang ; Xiao, Yongbo ; Liu, An ; Lei, Ming ; Zhao, Min-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4a17080771747fe5c5a4a6cb9f3e3552299f06fea5f6ea5b8ee25a0bfe80b2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Communication channels</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Fields (mathematics)</topic><topic>Hidden Markov models</topic><topic>Integrated sensing and communication</topic><topic>inverse-free</topic><topic>non-stationary Markov random field</topic><topic>Radar</topic><topic>Radar scattering</topic><topic>Radar targets</topic><topic>Scattering</topic><topic>scattering environment sensing</topic><topic>Sensors</topic><topic>Sparsity</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenkang</creatorcontrib><creatorcontrib>Xiao, Yongbo</creatorcontrib><creatorcontrib>Liu, An</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><creatorcontrib>Zhao, Min-Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Wenkang</au><au>Xiao, Yongbo</au><au>Liu, An</au><au>Lei, Ming</au><au>Zhao, Min-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Scattering Environment Sensing and Channel Estimation Based on Non-Stationary Markov Random Field</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-05</date><risdate>2024</risdate><volume>23</volume><issue>5</issue><spage>3903</spage><epage>3917</epage><pages>3903-3917</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper considers an integrated sensing and communication system, where some radar targets also serve as communication scatterers. A location domain channel modeling method is proposed based on the position of targets and scatterers in the scattering environment, and the resulting radar and communication channels exhibit a two-dimensional (2-D) joint burst sparsity. We propose a joint scattering environment sensing and channel estimation scheme to enhance the target/scatterer localization and channel estimation performance simultaneously, where a spatially non-stationary Markov random field (MRF) model is proposed to capture the 2-D joint burst sparsity. An expectation maximization (EM) based method is designed to solve the joint estimation problem, where the E-step obtains the Bayesian estimation of the radar and communication channels and the M-step automatically learns the dynamic position grid and prior parameters in the MRF. However, the existing sparse Bayesian inference methods used in the E-step involve a high-complexity matrix inverse per iteration. Moreover, due to the complicated non-stationary MRF prior, the complexity of M-step is exponentially large. To address these difficulties, we propose an inverse-free variational Bayesian inference algorithm for the E-step and a low-complexity method based on pseudo-likelihood approximation for the M-step. In the simulations, the proposed scheme can achieve a better performance than the state-of-the-art method while reducing the computational overhead significantly.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3312451</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3943-5234</orcidid><orcidid>https://orcid.org/0000-0003-0097-5062</orcidid><orcidid>https://orcid.org/0000-0002-5108-5513</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-05, Vol.23 (5), p.3903-3917 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_3053297857 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bayes methods Bayesian analysis Channel estimation Channels Communication channels Communications systems Complexity Fields (mathematics) Hidden Markov models Integrated sensing and communication inverse-free non-stationary Markov random field Radar Radar scattering Radar targets Scattering scattering environment sensing Sensors Sparsity Statistical inference |
title | Joint Scattering Environment Sensing and Channel Estimation Based on Non-Stationary Markov Random Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Scattering%20Environment%20Sensing%20and%20Channel%20Estimation%20Based%20on%20Non-Stationary%20Markov%20Random%20Field&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Xu,%20Wenkang&rft.date=2024-05&rft.volume=23&rft.issue=5&rft.spage=3903&rft.epage=3917&rft.pages=3903-3917&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3312451&rft_dat=%3Cproquest_RIE%3E3053297857%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053297857&rft_id=info:pmid/&rft_ieee_id=10250200&rfr_iscdi=true |