Numerical Simulation of the Dovetail Tee and Hydraulic Optimization of the Height Difference for Pipeline in a Liquefied Natural Gas Filling Station

Certain configurations of liquefied natural gas refueling stations exhibit a deficiency in managing boil-off gas. Furthermore, the ill-conceived linkage between the submersible pump and the gas storage tank pipeline leads to impeded natural gas transmission. This study employed the computational flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-05, Vol.16 (9), p.3525
Hauptverfasser: Kang, Zhangyang, Tan, Rufei, Yao, Qiongqiong, Zhang, Junmiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 3525
container_title Sustainability
container_volume 16
creator Kang, Zhangyang
Tan, Rufei
Yao, Qiongqiong
Zhang, Junmiao
description Certain configurations of liquefied natural gas refueling stations exhibit a deficiency in managing boil-off gas. Furthermore, the ill-conceived linkage between the submersible pump and the gas storage tank pipeline leads to impeded natural gas transmission. This study employed the computational fluid dynamics (CFD) methodology to scrutinize the hydrodynamic attributes of the T-type tee and dovetail tee configurations implemented in the pipeline design connecting the submersible pump and storage tank in a liquefied natural gas (LNG) filling station across diverse operational scenarios. The T-type tee induces detachment of the primary flow from the inner wall due to inertial forces, which results in vortex formation and heightened resistance, accompanied by increased energy dissipation. The transition of the rounded inner wall of the dovetail tee results in the reduction of eddy current generation and a smaller separation zone, thus minimizing resistance and energy loss. The maximum static differential pressure between the inlet and outlet of the dovetail tee is reduced by 52.52% compared to that of the T-type tee. In practical engineering applications, the use of dovetail tees leads to a reduction in the height difference for the pipeline by 17.58%, resulting in more uniform and stable flow rates and pressures in the flow field. These improvements contribute to engineering efficiency and environmental sustainability and are particularly evident in the design of LNG filling stations.
doi_str_mv 10.3390/su16093525
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053212217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793570055</galeid><sourcerecordid>A793570055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e3940b04e2a6b439c9c4c7e3c8919d79329283d0891cdc77d097be713cfd09bb3</originalsourceid><addsrcrecordid>eNpVkc9qGzEQxpfSQk2aS55goKcWnOqP14qOxm7igIlLnZwXrXZkT9hduZI2NH2OPHCUOJB6dJiR-H3zjZiiOOPsXErNfsSBT5mWpSg_FCPBFB9zVrKP_9Wfi9MY71kOKbnm01HxdDN0GMiaFjbUDa1J5HvwDtIOYeEfMBlq4RYRTN_A8rEJZmjJwnqfqKN_R_gSabtLsCDnMGBvEZwP8Iv22FKPQD0YWNGfAR1hAzcmDSHbXpkIl9RmZAub9NrwS_HJmTbi6Vs-Ke4uf97Ol-PV-up6PluNrRQqjVHqCavZBIWZ1hOprbYTq1DaC811o7QUWlzIhuWrbaxSDdOqRsWldbmsa3lSfD303Qefx4qpuvdD6LNlJVkpBReCq0ydH6itabGi3vkUjM2nwY6s7_N38vss-5WKsbLMgm9Hgswk_Ju2Zoixut78Pma_H1gbfIwBXbUP1JnwWHFWvWy1et-qfAZfF5QE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053212217</pqid></control><display><type>article</type><title>Numerical Simulation of the Dovetail Tee and Hydraulic Optimization of the Height Difference for Pipeline in a Liquefied Natural Gas Filling Station</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Kang, Zhangyang ; Tan, Rufei ; Yao, Qiongqiong ; Zhang, Junmiao</creator><creatorcontrib>Kang, Zhangyang ; Tan, Rufei ; Yao, Qiongqiong ; Zhang, Junmiao</creatorcontrib><description>Certain configurations of liquefied natural gas refueling stations exhibit a deficiency in managing boil-off gas. Furthermore, the ill-conceived linkage between the submersible pump and the gas storage tank pipeline leads to impeded natural gas transmission. This study employed the computational fluid dynamics (CFD) methodology to scrutinize the hydrodynamic attributes of the T-type tee and dovetail tee configurations implemented in the pipeline design connecting the submersible pump and storage tank in a liquefied natural gas (LNG) filling station across diverse operational scenarios. The T-type tee induces detachment of the primary flow from the inner wall due to inertial forces, which results in vortex formation and heightened resistance, accompanied by increased energy dissipation. The transition of the rounded inner wall of the dovetail tee results in the reduction of eddy current generation and a smaller separation zone, thus minimizing resistance and energy loss. The maximum static differential pressure between the inlet and outlet of the dovetail tee is reduced by 52.52% compared to that of the T-type tee. In practical engineering applications, the use of dovetail tees leads to a reduction in the height difference for the pipeline by 17.58%, resulting in more uniform and stable flow rates and pressures in the flow field. These improvements contribute to engineering efficiency and environmental sustainability and are particularly evident in the design of LNG filling stations.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16093525</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cavitation ; Compressed natural gas ; Emissions ; Energy consumption ; Fluid dynamics ; Gas pipelines ; Greenhouse gases ; Hydraulics ; Liquefied natural gas ; Numerical analysis ; Partial differential equations ; Simulation ; Simulation methods</subject><ispartof>Sustainability, 2024-05, Vol.16 (9), p.3525</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-e3940b04e2a6b439c9c4c7e3c8919d79329283d0891cdc77d097be713cfd09bb3</cites><orcidid>0000-0003-2927-063X ; 0000-0002-5264-7805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kang, Zhangyang</creatorcontrib><creatorcontrib>Tan, Rufei</creatorcontrib><creatorcontrib>Yao, Qiongqiong</creatorcontrib><creatorcontrib>Zhang, Junmiao</creatorcontrib><title>Numerical Simulation of the Dovetail Tee and Hydraulic Optimization of the Height Difference for Pipeline in a Liquefied Natural Gas Filling Station</title><title>Sustainability</title><description>Certain configurations of liquefied natural gas refueling stations exhibit a deficiency in managing boil-off gas. Furthermore, the ill-conceived linkage between the submersible pump and the gas storage tank pipeline leads to impeded natural gas transmission. This study employed the computational fluid dynamics (CFD) methodology to scrutinize the hydrodynamic attributes of the T-type tee and dovetail tee configurations implemented in the pipeline design connecting the submersible pump and storage tank in a liquefied natural gas (LNG) filling station across diverse operational scenarios. The T-type tee induces detachment of the primary flow from the inner wall due to inertial forces, which results in vortex formation and heightened resistance, accompanied by increased energy dissipation. The transition of the rounded inner wall of the dovetail tee results in the reduction of eddy current generation and a smaller separation zone, thus minimizing resistance and energy loss. The maximum static differential pressure between the inlet and outlet of the dovetail tee is reduced by 52.52% compared to that of the T-type tee. In practical engineering applications, the use of dovetail tees leads to a reduction in the height difference for the pipeline by 17.58%, resulting in more uniform and stable flow rates and pressures in the flow field. These improvements contribute to engineering efficiency and environmental sustainability and are particularly evident in the design of LNG filling stations.</description><subject>Cavitation</subject><subject>Compressed natural gas</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Fluid dynamics</subject><subject>Gas pipelines</subject><subject>Greenhouse gases</subject><subject>Hydraulics</subject><subject>Liquefied natural gas</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Simulation</subject><subject>Simulation methods</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc9qGzEQxpfSQk2aS55goKcWnOqP14qOxm7igIlLnZwXrXZkT9hduZI2NH2OPHCUOJB6dJiR-H3zjZiiOOPsXErNfsSBT5mWpSg_FCPBFB9zVrKP_9Wfi9MY71kOKbnm01HxdDN0GMiaFjbUDa1J5HvwDtIOYeEfMBlq4RYRTN_A8rEJZmjJwnqfqKN_R_gSabtLsCDnMGBvEZwP8Iv22FKPQD0YWNGfAR1hAzcmDSHbXpkIl9RmZAub9NrwS_HJmTbi6Vs-Ke4uf97Ol-PV-up6PluNrRQqjVHqCavZBIWZ1hOprbYTq1DaC811o7QUWlzIhuWrbaxSDdOqRsWldbmsa3lSfD303Qefx4qpuvdD6LNlJVkpBReCq0ydH6itabGi3vkUjM2nwY6s7_N38vss-5WKsbLMgm9Hgswk_Ju2Zoixut78Pma_H1gbfIwBXbUP1JnwWHFWvWy1et-qfAZfF5QE</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Kang, Zhangyang</creator><creator>Tan, Rufei</creator><creator>Yao, Qiongqiong</creator><creator>Zhang, Junmiao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2927-063X</orcidid><orcidid>https://orcid.org/0000-0002-5264-7805</orcidid></search><sort><creationdate>20240501</creationdate><title>Numerical Simulation of the Dovetail Tee and Hydraulic Optimization of the Height Difference for Pipeline in a Liquefied Natural Gas Filling Station</title><author>Kang, Zhangyang ; Tan, Rufei ; Yao, Qiongqiong ; Zhang, Junmiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e3940b04e2a6b439c9c4c7e3c8919d79329283d0891cdc77d097be713cfd09bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cavitation</topic><topic>Compressed natural gas</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Fluid dynamics</topic><topic>Gas pipelines</topic><topic>Greenhouse gases</topic><topic>Hydraulics</topic><topic>Liquefied natural gas</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Simulation</topic><topic>Simulation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Zhangyang</creatorcontrib><creatorcontrib>Tan, Rufei</creatorcontrib><creatorcontrib>Yao, Qiongqiong</creatorcontrib><creatorcontrib>Zhang, Junmiao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Zhangyang</au><au>Tan, Rufei</au><au>Yao, Qiongqiong</au><au>Zhang, Junmiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of the Dovetail Tee and Hydraulic Optimization of the Height Difference for Pipeline in a Liquefied Natural Gas Filling Station</atitle><jtitle>Sustainability</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>9</issue><spage>3525</spage><pages>3525-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Certain configurations of liquefied natural gas refueling stations exhibit a deficiency in managing boil-off gas. Furthermore, the ill-conceived linkage between the submersible pump and the gas storage tank pipeline leads to impeded natural gas transmission. This study employed the computational fluid dynamics (CFD) methodology to scrutinize the hydrodynamic attributes of the T-type tee and dovetail tee configurations implemented in the pipeline design connecting the submersible pump and storage tank in a liquefied natural gas (LNG) filling station across diverse operational scenarios. The T-type tee induces detachment of the primary flow from the inner wall due to inertial forces, which results in vortex formation and heightened resistance, accompanied by increased energy dissipation. The transition of the rounded inner wall of the dovetail tee results in the reduction of eddy current generation and a smaller separation zone, thus minimizing resistance and energy loss. The maximum static differential pressure between the inlet and outlet of the dovetail tee is reduced by 52.52% compared to that of the T-type tee. In practical engineering applications, the use of dovetail tees leads to a reduction in the height difference for the pipeline by 17.58%, resulting in more uniform and stable flow rates and pressures in the flow field. These improvements contribute to engineering efficiency and environmental sustainability and are particularly evident in the design of LNG filling stations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16093525</doi><orcidid>https://orcid.org/0000-0003-2927-063X</orcidid><orcidid>https://orcid.org/0000-0002-5264-7805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-05, Vol.16 (9), p.3525
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3053212217
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Cavitation
Compressed natural gas
Emissions
Energy consumption
Fluid dynamics
Gas pipelines
Greenhouse gases
Hydraulics
Liquefied natural gas
Numerical analysis
Partial differential equations
Simulation
Simulation methods
title Numerical Simulation of the Dovetail Tee and Hydraulic Optimization of the Height Difference for Pipeline in a Liquefied Natural Gas Filling Station
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20the%20Dovetail%20Tee%20and%20Hydraulic%20Optimization%20of%20the%20Height%20Difference%20for%20Pipeline%20in%20a%20Liquefied%20Natural%20Gas%20Filling%20Station&rft.jtitle=Sustainability&rft.au=Kang,%20Zhangyang&rft.date=2024-05-01&rft.volume=16&rft.issue=9&rft.spage=3525&rft.pages=3525-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16093525&rft_dat=%3Cgale_proqu%3EA793570055%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053212217&rft_id=info:pmid/&rft_galeid=A793570055&rfr_iscdi=true