Numerical simulation of hot soak in cabin based on ventilation strategy

To address the issue of excessive heat within the vehicle’s cabin, this study employs transient simulation methods to explore and analyze how various ventilation tactics and parameters influence the cabin’s temperature distribution and air quality. Findings indicate that the optimal thermal comfort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-05, Vol.2756 (1), p.12058
Hauptverfasser: Chen, Deyu, Chen, Suifan, Ge, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12058
container_title Journal of physics. Conference series
container_volume 2756
creator Chen, Deyu
Chen, Suifan
Ge, Qing
description To address the issue of excessive heat within the vehicle’s cabin, this study employs transient simulation methods to explore and analyze how various ventilation tactics and parameters influence the cabin’s temperature distribution and air quality. Findings indicate that the optimal thermal comfort and air quality conditions are achieved through the implementation of a top ventilation strategy. Specifically, with an air supply velocity of 3 m/s, a supply air temperature of 19°C, and an airflow direction of 15°, the air age at the driver’s breathing zone is measured at 18.92 seconds, while it stands at 20.35 seconds at the child passenger’s breathing zone. This ventilation setup achieves an air exchange efficiency of up to 80.1%, nearly complete pollutant removal efficiency, and places the thermal comfort at monitored human body points within a range deemed satisfactory or comfortable. Overall, this configuration yields the most favorable conditions for the comfort of the driver and passengers compared to other scenarios examined.
doi_str_mv 10.1088/1742-6596/2756/1/012058
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3053177380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053177380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2748-aa4f609b2dd1fc899c096aeb6d52e95ed038303f1bedac8005f8932f129de18a3</originalsourceid><addsrcrecordid>eNqFkFFLwzAQgIMoOKe_wYJvQu0lWZvkUYZORVRQn0PaJNq5NTVphf17UzomguA93B3cd3fwIXSK4QID5xlmM5IWuSgywvIiwxlgAjnfQ5PdZH_Xc36IjkJYAtAYbIIWD_3a-LpSqyTU636luto1ibPJu-uS4NRHUjdJpcqYSxWMTuL0yzRdvSVD51Vn3jbH6MCqVTAn2zpFr9dXL_Ob9P5xcTu_vE8rwmY8VWpmCxAl0RrbigtRgSiUKQudEyNyo4FyCtTi0mhVcYDcckGJxURog7miU3Q23m29--xN6OTS9b6JLyWFnGLGKIdIsZGqvAvBGytbX6-V30gMcrAmBx9ycCMHaxLL0VrcPB83a9f-nL57mj__BmWrbYTpH_B_L74BB418ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053177380</pqid></control><display><type>article</type><title>Numerical simulation of hot soak in cabin based on ventilation strategy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Deyu ; Chen, Suifan ; Ge, Qing</creator><creatorcontrib>Chen, Deyu ; Chen, Suifan ; Ge, Qing</creatorcontrib><description>To address the issue of excessive heat within the vehicle’s cabin, this study employs transient simulation methods to explore and analyze how various ventilation tactics and parameters influence the cabin’s temperature distribution and air quality. Findings indicate that the optimal thermal comfort and air quality conditions are achieved through the implementation of a top ventilation strategy. Specifically, with an air supply velocity of 3 m/s, a supply air temperature of 19°C, and an airflow direction of 15°, the air age at the driver’s breathing zone is measured at 18.92 seconds, while it stands at 20.35 seconds at the child passenger’s breathing zone. This ventilation setup achieves an air exchange efficiency of up to 80.1%, nearly complete pollutant removal efficiency, and places the thermal comfort at monitored human body points within a range deemed satisfactory or comfortable. Overall, this configuration yields the most favorable conditions for the comfort of the driver and passengers compared to other scenarios examined.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2756/1/012058</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air flow ; Air quality ; Air supplies ; Air temperature ; Temperature distribution ; Thermal comfort ; Ventilation</subject><ispartof>Journal of physics. Conference series, 2024-05, Vol.2756 (1), p.12058</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2748-aa4f609b2dd1fc899c096aeb6d52e95ed038303f1bedac8005f8932f129de18a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2756/1/012058/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Chen, Deyu</creatorcontrib><creatorcontrib>Chen, Suifan</creatorcontrib><creatorcontrib>Ge, Qing</creatorcontrib><title>Numerical simulation of hot soak in cabin based on ventilation strategy</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>To address the issue of excessive heat within the vehicle’s cabin, this study employs transient simulation methods to explore and analyze how various ventilation tactics and parameters influence the cabin’s temperature distribution and air quality. Findings indicate that the optimal thermal comfort and air quality conditions are achieved through the implementation of a top ventilation strategy. Specifically, with an air supply velocity of 3 m/s, a supply air temperature of 19°C, and an airflow direction of 15°, the air age at the driver’s breathing zone is measured at 18.92 seconds, while it stands at 20.35 seconds at the child passenger’s breathing zone. This ventilation setup achieves an air exchange efficiency of up to 80.1%, nearly complete pollutant removal efficiency, and places the thermal comfort at monitored human body points within a range deemed satisfactory or comfortable. Overall, this configuration yields the most favorable conditions for the comfort of the driver and passengers compared to other scenarios examined.</description><subject>Air flow</subject><subject>Air quality</subject><subject>Air supplies</subject><subject>Air temperature</subject><subject>Temperature distribution</subject><subject>Thermal comfort</subject><subject>Ventilation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFFLwzAQgIMoOKe_wYJvQu0lWZvkUYZORVRQn0PaJNq5NTVphf17UzomguA93B3cd3fwIXSK4QID5xlmM5IWuSgywvIiwxlgAjnfQ5PdZH_Xc36IjkJYAtAYbIIWD_3a-LpSqyTU636luto1ibPJu-uS4NRHUjdJpcqYSxWMTuL0yzRdvSVD51Vn3jbH6MCqVTAn2zpFr9dXL_Ob9P5xcTu_vE8rwmY8VWpmCxAl0RrbigtRgSiUKQudEyNyo4FyCtTi0mhVcYDcckGJxURog7miU3Q23m29--xN6OTS9b6JLyWFnGLGKIdIsZGqvAvBGytbX6-V30gMcrAmBx9ycCMHaxLL0VrcPB83a9f-nL57mj__BmWrbYTpH_B_L74BB418ZQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Chen, Deyu</creator><creator>Chen, Suifan</creator><creator>Ge, Qing</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>Numerical simulation of hot soak in cabin based on ventilation strategy</title><author>Chen, Deyu ; Chen, Suifan ; Ge, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2748-aa4f609b2dd1fc899c096aeb6d52e95ed038303f1bedac8005f8932f129de18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air flow</topic><topic>Air quality</topic><topic>Air supplies</topic><topic>Air temperature</topic><topic>Temperature distribution</topic><topic>Thermal comfort</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Deyu</creatorcontrib><creatorcontrib>Chen, Suifan</creatorcontrib><creatorcontrib>Ge, Qing</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Deyu</au><au>Chen, Suifan</au><au>Ge, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of hot soak in cabin based on ventilation strategy</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>2756</volume><issue>1</issue><spage>12058</spage><pages>12058-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>To address the issue of excessive heat within the vehicle’s cabin, this study employs transient simulation methods to explore and analyze how various ventilation tactics and parameters influence the cabin’s temperature distribution and air quality. Findings indicate that the optimal thermal comfort and air quality conditions are achieved through the implementation of a top ventilation strategy. Specifically, with an air supply velocity of 3 m/s, a supply air temperature of 19°C, and an airflow direction of 15°, the air age at the driver’s breathing zone is measured at 18.92 seconds, while it stands at 20.35 seconds at the child passenger’s breathing zone. This ventilation setup achieves an air exchange efficiency of up to 80.1%, nearly complete pollutant removal efficiency, and places the thermal comfort at monitored human body points within a range deemed satisfactory or comfortable. Overall, this configuration yields the most favorable conditions for the comfort of the driver and passengers compared to other scenarios examined.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2756/1/012058</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-05, Vol.2756 (1), p.12058
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3053177380
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Air flow
Air quality
Air supplies
Air temperature
Temperature distribution
Thermal comfort
Ventilation
title Numerical simulation of hot soak in cabin based on ventilation strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20hot%20soak%20in%20cabin%20based%20on%20ventilation%20strategy&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Chen,%20Deyu&rft.date=2024-05-01&rft.volume=2756&rft.issue=1&rft.spage=12058&rft.pages=12058-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2756/1/012058&rft_dat=%3Cproquest_iop_j%3E3053177380%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053177380&rft_id=info:pmid/&rfr_iscdi=true