A stable one-point quadrature rule for three-dimensional numerical manifold method

We present a numerically stable one-point quadrature rule for the stiffness matrix and mass matrix of the three-dimensional numerical manifold method (3D NMM). The rule simplifies the integration over irregularly shaped manifold elements and overcomes locking issues, and it does not cause spurious m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2024-05, Vol.67 (5), p.1401-1416
Hauptverfasser: Zhang, Ning, Zheng, Hong, Yang, Liang, Wu, WenAn, Yuan, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1416
container_issue 5
container_start_page 1401
container_title Science China. Technological sciences
container_volume 67
creator Zhang, Ning
Zheng, Hong
Yang, Liang
Wu, WenAn
Yuan, Chi
description We present a numerically stable one-point quadrature rule for the stiffness matrix and mass matrix of the three-dimensional numerical manifold method (3D NMM). The rule simplifies the integration over irregularly shaped manifold elements and overcomes locking issues, and it does not cause spurious modes in modal analysis. The essential idea is to transfer the integral over a manifold element to a few moments to the element center, thereby deriving a one-point integration rule by the moments and making modifications to avoid locking issues. For the stiffness matrix, after the virtual work is decomposed into moments, higher-order moments are modified to overcome locking issues in nearly incompressible and bending-dominated conditions. For the mass matrix, the consistent and lumped types are derived by moments. In particular, the lumped type has the clear advantage of simplicity. The proposed method is naturally suitable for 3D NMM meshes automatically generated from a regular grid. Numerical tests justify the accuracy improvements and the stability of the proposed procedure.
doi_str_mv 10.1007/s11431-022-2353-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053165766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053165766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-62960e02ba57d04795cc33520204501e2e40454ec5d41e1f426227bff87b7b923</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsNT-Ad4Cnldnv5NjKX5BQRA9L5tkYlOSbLqbHPzv3RLBk3OZB_PeY_gRcsvgngGYh8iYFIwC55QLJai8ICuW64KyAuAyaW0kNYKza7KJ8QhpRF4Akyvyvs3i5MoOMz8gHX07TNlpdnVw0xwwC3O6ND5k0yEg0rrtcYitH1yXDXOPoa2S6t3QNr6rsx6ng69vyFXjuoib370mn0-PH7sXun97ft1t97TiOp-o5oUGBF46ZWqQplBVJYTiwEEqYMhRJiGxUrVkyBrJNeembJrclKYsuFiTu6V3DP40Y5zs0c8hvRatACWYVkbr5GKLqwo-xoCNHUPbu_BtGdgzPbvQs4mePdOzMmX4konJO3xh-Gv-P_QDQZVwtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053165766</pqid></control><display><type>article</type><title>A stable one-point quadrature rule for three-dimensional numerical manifold method</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Ning ; Zheng, Hong ; Yang, Liang ; Wu, WenAn ; Yuan, Chi</creator><creatorcontrib>Zhang, Ning ; Zheng, Hong ; Yang, Liang ; Wu, WenAn ; Yuan, Chi</creatorcontrib><description>We present a numerically stable one-point quadrature rule for the stiffness matrix and mass matrix of the three-dimensional numerical manifold method (3D NMM). The rule simplifies the integration over irregularly shaped manifold elements and overcomes locking issues, and it does not cause spurious modes in modal analysis. The essential idea is to transfer the integral over a manifold element to a few moments to the element center, thereby deriving a one-point integration rule by the moments and making modifications to avoid locking issues. For the stiffness matrix, after the virtual work is decomposed into moments, higher-order moments are modified to overcome locking issues in nearly incompressible and bending-dominated conditions. For the mass matrix, the consistent and lumped types are derived by moments. In particular, the lumped type has the clear advantage of simplicity. The proposed method is naturally suitable for 3D NMM meshes automatically generated from a regular grid. Numerical tests justify the accuracy improvements and the stability of the proposed procedure.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-022-2353-4</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Engineering ; Locking ; Mass matrix ; Modal analysis ; Quadratures ; Stiffness matrix</subject><ispartof>Science China. Technological sciences, 2024-05, Vol.67 (5), p.1401-1416</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-62960e02ba57d04795cc33520204501e2e40454ec5d41e1f426227bff87b7b923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-022-2353-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-022-2353-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Yang, Liang</creatorcontrib><creatorcontrib>Wu, WenAn</creatorcontrib><creatorcontrib>Yuan, Chi</creatorcontrib><title>A stable one-point quadrature rule for three-dimensional numerical manifold method</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>We present a numerically stable one-point quadrature rule for the stiffness matrix and mass matrix of the three-dimensional numerical manifold method (3D NMM). The rule simplifies the integration over irregularly shaped manifold elements and overcomes locking issues, and it does not cause spurious modes in modal analysis. The essential idea is to transfer the integral over a manifold element to a few moments to the element center, thereby deriving a one-point integration rule by the moments and making modifications to avoid locking issues. For the stiffness matrix, after the virtual work is decomposed into moments, higher-order moments are modified to overcome locking issues in nearly incompressible and bending-dominated conditions. For the mass matrix, the consistent and lumped types are derived by moments. In particular, the lumped type has the clear advantage of simplicity. The proposed method is naturally suitable for 3D NMM meshes automatically generated from a regular grid. Numerical tests justify the accuracy improvements and the stability of the proposed procedure.</description><subject>Engineering</subject><subject>Locking</subject><subject>Mass matrix</subject><subject>Modal analysis</subject><subject>Quadratures</subject><subject>Stiffness matrix</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsNT-Ad4Cnldnv5NjKX5BQRA9L5tkYlOSbLqbHPzv3RLBk3OZB_PeY_gRcsvgngGYh8iYFIwC55QLJai8ICuW64KyAuAyaW0kNYKza7KJ8QhpRF4Akyvyvs3i5MoOMz8gHX07TNlpdnVw0xwwC3O6ND5k0yEg0rrtcYitH1yXDXOPoa2S6t3QNr6rsx6ng69vyFXjuoib370mn0-PH7sXun97ft1t97TiOp-o5oUGBF46ZWqQplBVJYTiwEEqYMhRJiGxUrVkyBrJNeembJrclKYsuFiTu6V3DP40Y5zs0c8hvRatACWYVkbr5GKLqwo-xoCNHUPbu_BtGdgzPbvQs4mePdOzMmX4konJO3xh-Gv-P_QDQZVwtA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhang, Ning</creator><creator>Zheng, Hong</creator><creator>Yang, Liang</creator><creator>Wu, WenAn</creator><creator>Yuan, Chi</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>A stable one-point quadrature rule for three-dimensional numerical manifold method</title><author>Zhang, Ning ; Zheng, Hong ; Yang, Liang ; Wu, WenAn ; Yuan, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-62960e02ba57d04795cc33520204501e2e40454ec5d41e1f426227bff87b7b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Engineering</topic><topic>Locking</topic><topic>Mass matrix</topic><topic>Modal analysis</topic><topic>Quadratures</topic><topic>Stiffness matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Yang, Liang</creatorcontrib><creatorcontrib>Wu, WenAn</creatorcontrib><creatorcontrib>Yuan, Chi</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ning</au><au>Zheng, Hong</au><au>Yang, Liang</au><au>Wu, WenAn</au><au>Yuan, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stable one-point quadrature rule for three-dimensional numerical manifold method</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>67</volume><issue>5</issue><spage>1401</spage><epage>1416</epage><pages>1401-1416</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>We present a numerically stable one-point quadrature rule for the stiffness matrix and mass matrix of the three-dimensional numerical manifold method (3D NMM). The rule simplifies the integration over irregularly shaped manifold elements and overcomes locking issues, and it does not cause spurious modes in modal analysis. The essential idea is to transfer the integral over a manifold element to a few moments to the element center, thereby deriving a one-point integration rule by the moments and making modifications to avoid locking issues. For the stiffness matrix, after the virtual work is decomposed into moments, higher-order moments are modified to overcome locking issues in nearly incompressible and bending-dominated conditions. For the mass matrix, the consistent and lumped types are derived by moments. In particular, the lumped type has the clear advantage of simplicity. The proposed method is naturally suitable for 3D NMM meshes automatically generated from a regular grid. Numerical tests justify the accuracy improvements and the stability of the proposed procedure.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-022-2353-4</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2024-05, Vol.67 (5), p.1401-1416
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_3053165766
source SpringerLink Journals; Alma/SFX Local Collection
subjects Engineering
Locking
Mass matrix
Modal analysis
Quadratures
Stiffness matrix
title A stable one-point quadrature rule for three-dimensional numerical manifold method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stable%20one-point%20quadrature%20rule%20for%20three-dimensional%20numerical%20manifold%20method&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Zhang,%20Ning&rft.date=2024-05-01&rft.volume=67&rft.issue=5&rft.spage=1401&rft.epage=1416&rft.pages=1401-1416&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-022-2353-4&rft_dat=%3Cproquest_cross%3E3053165766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053165766&rft_id=info:pmid/&rfr_iscdi=true