A novel variable activation function-long short-term memory neural network for high-precision lithium-ion battery capacity estimation
Capacity estimation of lithium-ion batteries is significant to achieving the effective establishment of the prognostics and health management (PHM) system of lithium-ion batteries. A capacity estimation model based on the variable activation function-long short-term memory (VAF-LSTM) algorithm is pr...
Gespeichert in:
Veröffentlicht in: | Ionics 2024-05, Vol.30 (5), p.2609-2625 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2625 |
---|---|
container_issue | 5 |
container_start_page | 2609 |
container_title | Ionics |
container_volume | 30 |
creator | Wang, Yangtao Wang, Shunli Fan, Yongcun Zhang, Hansheng Xie, Yanxin Fernandez, Carlos |
description | Capacity estimation of lithium-ion batteries is significant to achieving the effective establishment of the prognostics and health management (PHM) system of lithium-ion batteries. A capacity estimation model based on the variable activation function-long short-term memory (VAF-LSTM) algorithm is proposed to achieve the high-precision lithium-ion battery capacity estimation. By re-selecting each activation function, the proposed algorithm avoids the low estimation accuracy caused by the fixed activation function of the long short-term memory (LSTM) algorithm, and meanwhile, it can effectively speed up the convergence. The algorithm inputs consider two correlation coefficients so that the health factor with the highest correlation coefficient is chosen as the network input. The experimental data used for the experimental validation is the NASA public battery data under different temperature operating conditions. The validation results show that the estimation accuracy of the VAF-LSTM algorithm under different training sets is greatly improved compared with the traditional LSTM algorithm and the back propagation (BP) algorithm, and the average estimation accuracy can reach more than 97.5%. The improvement of estimation accuracy is also clearly demonstrated under the MAE, MSE, and RMSE. Therefore, the capacity estimation model will provide an important reference role in high-precision battery management systems. |
doi_str_mv | 10.1007/s11581-024-05475-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053165198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053165198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-459117d73ca9afe327b0ac15b632fa0cbbdc2962b43c60ec4a9f3cb132921933</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscTas7SROjlXFn4TEpXfLcZ3GJYmD7RTlAXhvkhaJG6edw3wzq0HolsI9BRAPgdI0pwRYQiBNREryM7SgecYIiAzO0QKKRBABibhEVyHsAbKMMrFA3yvcuYNp8EF5q8rGYKWjPahoXYerodOzII3rdjjUzkcSjW9xa1rnR9yZwatmOvHL-Q9cOY9ru6tJ7422YU5obKzt0JJZlypO8Ii16pW2ccQmRNsem67RRaWaYG5-7xJtnh436xfy9v78ul69Ec0ERJKkBaViK7hWhaoMZ6IEpWlaZpxVCnRZbjUrMlYmXGdgdKKKiuuSclYwWnC-RHen2N67z2Gql3s3-G5qlBxSTrOUFvnkYieX9i4EbyrZ--lPP0oKcl5bntaW09ryuLacIX6CwmTudsb_Rf9D_QBy_oYK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053165198</pqid></control><display><type>article</type><title>A novel variable activation function-long short-term memory neural network for high-precision lithium-ion battery capacity estimation</title><source>SpringerNature Journals</source><creator>Wang, Yangtao ; Wang, Shunli ; Fan, Yongcun ; Zhang, Hansheng ; Xie, Yanxin ; Fernandez, Carlos</creator><creatorcontrib>Wang, Yangtao ; Wang, Shunli ; Fan, Yongcun ; Zhang, Hansheng ; Xie, Yanxin ; Fernandez, Carlos</creatorcontrib><description>Capacity estimation of lithium-ion batteries is significant to achieving the effective establishment of the prognostics and health management (PHM) system of lithium-ion batteries. A capacity estimation model based on the variable activation function-long short-term memory (VAF-LSTM) algorithm is proposed to achieve the high-precision lithium-ion battery capacity estimation. By re-selecting each activation function, the proposed algorithm avoids the low estimation accuracy caused by the fixed activation function of the long short-term memory (LSTM) algorithm, and meanwhile, it can effectively speed up the convergence. The algorithm inputs consider two correlation coefficients so that the health factor with the highest correlation coefficient is chosen as the network input. The experimental data used for the experimental validation is the NASA public battery data under different temperature operating conditions. The validation results show that the estimation accuracy of the VAF-LSTM algorithm under different training sets is greatly improved compared with the traditional LSTM algorithm and the back propagation (BP) algorithm, and the average estimation accuracy can reach more than 97.5%. The improvement of estimation accuracy is also clearly demonstrated under the MAE, MSE, and RMSE. Therefore, the capacity estimation model will provide an important reference role in high-precision battery management systems.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-024-05475-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Back propagation networks ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Correlation coefficients ; Electrochemistry ; Energy Storage ; Lithium ; Lithium-ion batteries ; Management systems ; Neural networks ; Optical and Electronic Materials ; Power management ; Rechargeable batteries ; Renewable and Green Energy</subject><ispartof>Ionics, 2024-05, Vol.30 (5), p.2609-2625</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-459117d73ca9afe327b0ac15b632fa0cbbdc2962b43c60ec4a9f3cb132921933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-024-05475-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-024-05475-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Wang, Yangtao</creatorcontrib><creatorcontrib>Wang, Shunli</creatorcontrib><creatorcontrib>Fan, Yongcun</creatorcontrib><creatorcontrib>Zhang, Hansheng</creatorcontrib><creatorcontrib>Xie, Yanxin</creatorcontrib><creatorcontrib>Fernandez, Carlos</creatorcontrib><title>A novel variable activation function-long short-term memory neural network for high-precision lithium-ion battery capacity estimation</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Capacity estimation of lithium-ion batteries is significant to achieving the effective establishment of the prognostics and health management (PHM) system of lithium-ion batteries. A capacity estimation model based on the variable activation function-long short-term memory (VAF-LSTM) algorithm is proposed to achieve the high-precision lithium-ion battery capacity estimation. By re-selecting each activation function, the proposed algorithm avoids the low estimation accuracy caused by the fixed activation function of the long short-term memory (LSTM) algorithm, and meanwhile, it can effectively speed up the convergence. The algorithm inputs consider two correlation coefficients so that the health factor with the highest correlation coefficient is chosen as the network input. The experimental data used for the experimental validation is the NASA public battery data under different temperature operating conditions. The validation results show that the estimation accuracy of the VAF-LSTM algorithm under different training sets is greatly improved compared with the traditional LSTM algorithm and the back propagation (BP) algorithm, and the average estimation accuracy can reach more than 97.5%. The improvement of estimation accuracy is also clearly demonstrated under the MAE, MSE, and RMSE. Therefore, the capacity estimation model will provide an important reference role in high-precision battery management systems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Correlation coefficients</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Management systems</subject><subject>Neural networks</subject><subject>Optical and Electronic Materials</subject><subject>Power management</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscTas7SROjlXFn4TEpXfLcZ3GJYmD7RTlAXhvkhaJG6edw3wzq0HolsI9BRAPgdI0pwRYQiBNREryM7SgecYIiAzO0QKKRBABibhEVyHsAbKMMrFA3yvcuYNp8EF5q8rGYKWjPahoXYerodOzII3rdjjUzkcSjW9xa1rnR9yZwatmOvHL-Q9cOY9ru6tJ7422YU5obKzt0JJZlypO8Ii16pW2ccQmRNsem67RRaWaYG5-7xJtnh436xfy9v78ul69Ec0ERJKkBaViK7hWhaoMZ6IEpWlaZpxVCnRZbjUrMlYmXGdgdKKKiuuSclYwWnC-RHen2N67z2Gql3s3-G5qlBxSTrOUFvnkYieX9i4EbyrZ--lPP0oKcl5bntaW09ryuLacIX6CwmTudsb_Rf9D_QBy_oYK</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Yangtao</creator><creator>Wang, Shunli</creator><creator>Fan, Yongcun</creator><creator>Zhang, Hansheng</creator><creator>Xie, Yanxin</creator><creator>Fernandez, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>A novel variable activation function-long short-term memory neural network for high-precision lithium-ion battery capacity estimation</title><author>Wang, Yangtao ; Wang, Shunli ; Fan, Yongcun ; Zhang, Hansheng ; Xie, Yanxin ; Fernandez, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-459117d73ca9afe327b0ac15b632fa0cbbdc2962b43c60ec4a9f3cb132921933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Correlation coefficients</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Management systems</topic><topic>Neural networks</topic><topic>Optical and Electronic Materials</topic><topic>Power management</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yangtao</creatorcontrib><creatorcontrib>Wang, Shunli</creatorcontrib><creatorcontrib>Fan, Yongcun</creatorcontrib><creatorcontrib>Zhang, Hansheng</creatorcontrib><creatorcontrib>Xie, Yanxin</creatorcontrib><creatorcontrib>Fernandez, Carlos</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yangtao</au><au>Wang, Shunli</au><au>Fan, Yongcun</au><au>Zhang, Hansheng</au><au>Xie, Yanxin</au><au>Fernandez, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel variable activation function-long short-term memory neural network for high-precision lithium-ion battery capacity estimation</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>2609</spage><epage>2625</epage><pages>2609-2625</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Capacity estimation of lithium-ion batteries is significant to achieving the effective establishment of the prognostics and health management (PHM) system of lithium-ion batteries. A capacity estimation model based on the variable activation function-long short-term memory (VAF-LSTM) algorithm is proposed to achieve the high-precision lithium-ion battery capacity estimation. By re-selecting each activation function, the proposed algorithm avoids the low estimation accuracy caused by the fixed activation function of the long short-term memory (LSTM) algorithm, and meanwhile, it can effectively speed up the convergence. The algorithm inputs consider two correlation coefficients so that the health factor with the highest correlation coefficient is chosen as the network input. The experimental data used for the experimental validation is the NASA public battery data under different temperature operating conditions. The validation results show that the estimation accuracy of the VAF-LSTM algorithm under different training sets is greatly improved compared with the traditional LSTM algorithm and the back propagation (BP) algorithm, and the average estimation accuracy can reach more than 97.5%. The improvement of estimation accuracy is also clearly demonstrated under the MAE, MSE, and RMSE. Therefore, the capacity estimation model will provide an important reference role in high-precision battery management systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-024-05475-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2024-05, Vol.30 (5), p.2609-2625 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_3053165198 |
source | SpringerNature Journals |
subjects | Accuracy Algorithms Back propagation networks Chemistry Chemistry and Materials Science Condensed Matter Physics Correlation coefficients Electrochemistry Energy Storage Lithium Lithium-ion batteries Management systems Neural networks Optical and Electronic Materials Power management Rechargeable batteries Renewable and Green Energy |
title | A novel variable activation function-long short-term memory neural network for high-precision lithium-ion battery capacity estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20variable%20activation%20function-long%20short-term%20memory%20neural%20network%20for%20high-precision%20lithium-ion%20battery%20capacity%20estimation&rft.jtitle=Ionics&rft.au=Wang,%20Yangtao&rft.date=2024-05-01&rft.volume=30&rft.issue=5&rft.spage=2609&rft.epage=2625&rft.pages=2609-2625&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-024-05475-8&rft_dat=%3Cproquest_cross%3E3053165198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053165198&rft_id=info:pmid/&rfr_iscdi=true |