A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines
Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stab...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-05, Vol.13 (9), p.1716 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1716 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Du, Hao Cai, Linglong Ma, Zhiqin Rao, Zhangquan Shu, Xiang Jiang, Shuo Li, Zhongxiang Li, Xianqiang |
description | Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%. |
doi_str_mv | 10.3390/electronics13091716 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053158202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793567515</galeid><sourcerecordid>A793567515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-db06b027262ede4bbedd19f655619cce7df68aa33136179b885a48e5a996b8533</originalsourceid><addsrcrecordid>eNptkcFKAzEQhhdRUGqfwEvA89Zk02Q3x1paLbQotHpdsslsG9kmNcmifXtT6sGDM4cZhv_7mWGy7I7gEaUCP0AHKnpnjQqEYkFKwi-ymwKXIheFKC7_9NfZMIQPnEIQWlF8k-0naAVx5zRqnUcLDTaa9mjsFs2-I3grO7TeOR_zqfGqNxHNZd_FgIxFr-4LPNp4aUNi9-ADepQBNHIWrfvDIVHoPa2WfFdS7YyFcJtdtbILMPytg-xtPttMn_Ply9NiOlnmihISc91g3uCiLHgBGsZNA1oT0XLGOBFKQalbXklJKaGclKKpKibHFTApBG8qRukguz_7Hrz77CHE-sP1p2NCTTGjhFUFLpJqdFZtZQe1sa2LXqqUGvZGOQutSfNJKSjjJSMsAfQMKO9C8NDWB2_20h9rguvTL-p_fkF_APlvgCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053158202</pqid></control><display><type>article</type><title>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Du, Hao ; Cai, Linglong ; Ma, Zhiqin ; Rao, Zhangquan ; Shu, Xiang ; Jiang, Shuo ; Li, Zhongxiang ; Li, Xianqiang</creator><creatorcontrib>Du, Hao ; Cai, Linglong ; Ma, Zhiqin ; Rao, Zhangquan ; Shu, Xiang ; Jiang, Shuo ; Li, Zhongxiang ; Li, Xianqiang</creatorcontrib><description>Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13091716</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial intelligence ; China ; Classification ; Coils (windings) ; Economic impact ; Electric power supplies ; Electric power systems ; Electric properties ; Electric transformers ; Fault detection ; Faults ; Frequency response ; Identification ; Identification methods ; Kernel functions ; Magnetic fields ; Methods ; Neural networks ; Performance evaluation ; Short circuit currents ; Support vector machines ; Systems stability ; Temperature ; Transformers ; Vibration analysis</subject><ispartof>Electronics (Basel), 2024-05, Vol.13 (9), p.1716</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-db06b027262ede4bbedd19f655619cce7df68aa33136179b885a48e5a996b8533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Cai, Linglong</creatorcontrib><creatorcontrib>Ma, Zhiqin</creatorcontrib><creatorcontrib>Rao, Zhangquan</creatorcontrib><creatorcontrib>Shu, Xiang</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Li, Zhongxiang</creatorcontrib><creatorcontrib>Li, Xianqiang</creatorcontrib><title>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</title><title>Electronics (Basel)</title><description>Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>China</subject><subject>Classification</subject><subject>Coils (windings)</subject><subject>Economic impact</subject><subject>Electric power supplies</subject><subject>Electric power systems</subject><subject>Electric properties</subject><subject>Electric transformers</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Frequency response</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Kernel functions</subject><subject>Magnetic fields</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Short circuit currents</subject><subject>Support vector machines</subject><subject>Systems stability</subject><subject>Temperature</subject><subject>Transformers</subject><subject>Vibration analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkcFKAzEQhhdRUGqfwEvA89Zk02Q3x1paLbQotHpdsslsG9kmNcmifXtT6sGDM4cZhv_7mWGy7I7gEaUCP0AHKnpnjQqEYkFKwi-ymwKXIheFKC7_9NfZMIQPnEIQWlF8k-0naAVx5zRqnUcLDTaa9mjsFs2-I3grO7TeOR_zqfGqNxHNZd_FgIxFr-4LPNp4aUNi9-ADepQBNHIWrfvDIVHoPa2WfFdS7YyFcJtdtbILMPytg-xtPttMn_Ply9NiOlnmihISc91g3uCiLHgBGsZNA1oT0XLGOBFKQalbXklJKaGclKKpKibHFTApBG8qRukguz_7Hrz77CHE-sP1p2NCTTGjhFUFLpJqdFZtZQe1sa2LXqqUGvZGOQutSfNJKSjjJSMsAfQMKO9C8NDWB2_20h9rguvTL-p_fkF_APlvgCo</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Du, Hao</creator><creator>Cai, Linglong</creator><creator>Ma, Zhiqin</creator><creator>Rao, Zhangquan</creator><creator>Shu, Xiang</creator><creator>Jiang, Shuo</creator><creator>Li, Zhongxiang</creator><creator>Li, Xianqiang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</title><author>Du, Hao ; Cai, Linglong ; Ma, Zhiqin ; Rao, Zhangquan ; Shu, Xiang ; Jiang, Shuo ; Li, Zhongxiang ; Li, Xianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-db06b027262ede4bbedd19f655619cce7df68aa33136179b885a48e5a996b8533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>China</topic><topic>Classification</topic><topic>Coils (windings)</topic><topic>Economic impact</topic><topic>Electric power supplies</topic><topic>Electric power systems</topic><topic>Electric properties</topic><topic>Electric transformers</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Frequency response</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Kernel functions</topic><topic>Magnetic fields</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Short circuit currents</topic><topic>Support vector machines</topic><topic>Systems stability</topic><topic>Temperature</topic><topic>Transformers</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Cai, Linglong</creatorcontrib><creatorcontrib>Ma, Zhiqin</creatorcontrib><creatorcontrib>Rao, Zhangquan</creatorcontrib><creatorcontrib>Shu, Xiang</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Li, Zhongxiang</creatorcontrib><creatorcontrib>Li, Xianqiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Hao</au><au>Cai, Linglong</au><au>Ma, Zhiqin</au><au>Rao, Zhangquan</au><au>Shu, Xiang</au><au>Jiang, Shuo</au><au>Li, Zhongxiang</au><au>Li, Xianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>1716</spage><pages>1716-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13091716</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-05, Vol.13 (9), p.1716 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3053158202 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Accuracy Algorithms Analysis Artificial intelligence China Classification Coils (windings) Economic impact Electric power supplies Electric power systems Electric properties Electric transformers Fault detection Faults Frequency response Identification Identification methods Kernel functions Magnetic fields Methods Neural networks Performance evaluation Short circuit currents Support vector machines Systems stability Temperature Transformers Vibration analysis |
title | A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Identifying%20External%20Short-Circuit%20Faults%20in%20Power%20Transformers%20Based%20on%20Support%20Vector%20Machines&rft.jtitle=Electronics%20(Basel)&rft.au=Du,%20Hao&rft.date=2024-05-01&rft.volume=13&rft.issue=9&rft.spage=1716&rft.pages=1716-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13091716&rft_dat=%3Cgale_proqu%3EA793567515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053158202&rft_id=info:pmid/&rft_galeid=A793567515&rfr_iscdi=true |