A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines

Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-05, Vol.13 (9), p.1716
Hauptverfasser: Du, Hao, Cai, Linglong, Ma, Zhiqin, Rao, Zhangquan, Shu, Xiang, Jiang, Shuo, Li, Zhongxiang, Li, Xianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1716
container_title Electronics (Basel)
container_volume 13
creator Du, Hao
Cai, Linglong
Ma, Zhiqin
Rao, Zhangquan
Shu, Xiang
Jiang, Shuo
Li, Zhongxiang
Li, Xianqiang
description Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%.
doi_str_mv 10.3390/electronics13091716
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3053158202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793567515</galeid><sourcerecordid>A793567515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-db06b027262ede4bbedd19f655619cce7df68aa33136179b885a48e5a996b8533</originalsourceid><addsrcrecordid>eNptkcFKAzEQhhdRUGqfwEvA89Zk02Q3x1paLbQotHpdsslsG9kmNcmifXtT6sGDM4cZhv_7mWGy7I7gEaUCP0AHKnpnjQqEYkFKwi-ymwKXIheFKC7_9NfZMIQPnEIQWlF8k-0naAVx5zRqnUcLDTaa9mjsFs2-I3grO7TeOR_zqfGqNxHNZd_FgIxFr-4LPNp4aUNi9-ADepQBNHIWrfvDIVHoPa2WfFdS7YyFcJtdtbILMPytg-xtPttMn_Ply9NiOlnmihISc91g3uCiLHgBGsZNA1oT0XLGOBFKQalbXklJKaGclKKpKibHFTApBG8qRukguz_7Hrz77CHE-sP1p2NCTTGjhFUFLpJqdFZtZQe1sa2LXqqUGvZGOQutSfNJKSjjJSMsAfQMKO9C8NDWB2_20h9rguvTL-p_fkF_APlvgCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053158202</pqid></control><display><type>article</type><title>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Du, Hao ; Cai, Linglong ; Ma, Zhiqin ; Rao, Zhangquan ; Shu, Xiang ; Jiang, Shuo ; Li, Zhongxiang ; Li, Xianqiang</creator><creatorcontrib>Du, Hao ; Cai, Linglong ; Ma, Zhiqin ; Rao, Zhangquan ; Shu, Xiang ; Jiang, Shuo ; Li, Zhongxiang ; Li, Xianqiang</creatorcontrib><description>Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13091716</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial intelligence ; China ; Classification ; Coils (windings) ; Economic impact ; Electric power supplies ; Electric power systems ; Electric properties ; Electric transformers ; Fault detection ; Faults ; Frequency response ; Identification ; Identification methods ; Kernel functions ; Magnetic fields ; Methods ; Neural networks ; Performance evaluation ; Short circuit currents ; Support vector machines ; Systems stability ; Temperature ; Transformers ; Vibration analysis</subject><ispartof>Electronics (Basel), 2024-05, Vol.13 (9), p.1716</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-db06b027262ede4bbedd19f655619cce7df68aa33136179b885a48e5a996b8533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Cai, Linglong</creatorcontrib><creatorcontrib>Ma, Zhiqin</creatorcontrib><creatorcontrib>Rao, Zhangquan</creatorcontrib><creatorcontrib>Shu, Xiang</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Li, Zhongxiang</creatorcontrib><creatorcontrib>Li, Xianqiang</creatorcontrib><title>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</title><title>Electronics (Basel)</title><description>Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>China</subject><subject>Classification</subject><subject>Coils (windings)</subject><subject>Economic impact</subject><subject>Electric power supplies</subject><subject>Electric power systems</subject><subject>Electric properties</subject><subject>Electric transformers</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Frequency response</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Kernel functions</subject><subject>Magnetic fields</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Short circuit currents</subject><subject>Support vector machines</subject><subject>Systems stability</subject><subject>Temperature</subject><subject>Transformers</subject><subject>Vibration analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkcFKAzEQhhdRUGqfwEvA89Zk02Q3x1paLbQotHpdsslsG9kmNcmifXtT6sGDM4cZhv_7mWGy7I7gEaUCP0AHKnpnjQqEYkFKwi-ymwKXIheFKC7_9NfZMIQPnEIQWlF8k-0naAVx5zRqnUcLDTaa9mjsFs2-I3grO7TeOR_zqfGqNxHNZd_FgIxFr-4LPNp4aUNi9-ADepQBNHIWrfvDIVHoPa2WfFdS7YyFcJtdtbILMPytg-xtPttMn_Ply9NiOlnmihISc91g3uCiLHgBGsZNA1oT0XLGOBFKQalbXklJKaGclKKpKibHFTApBG8qRukguz_7Hrz77CHE-sP1p2NCTTGjhFUFLpJqdFZtZQe1sa2LXqqUGvZGOQutSfNJKSjjJSMsAfQMKO9C8NDWB2_20h9rguvTL-p_fkF_APlvgCo</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Du, Hao</creator><creator>Cai, Linglong</creator><creator>Ma, Zhiqin</creator><creator>Rao, Zhangquan</creator><creator>Shu, Xiang</creator><creator>Jiang, Shuo</creator><creator>Li, Zhongxiang</creator><creator>Li, Xianqiang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</title><author>Du, Hao ; Cai, Linglong ; Ma, Zhiqin ; Rao, Zhangquan ; Shu, Xiang ; Jiang, Shuo ; Li, Zhongxiang ; Li, Xianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-db06b027262ede4bbedd19f655619cce7df68aa33136179b885a48e5a996b8533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>China</topic><topic>Classification</topic><topic>Coils (windings)</topic><topic>Economic impact</topic><topic>Electric power supplies</topic><topic>Electric power systems</topic><topic>Electric properties</topic><topic>Electric transformers</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Frequency response</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Kernel functions</topic><topic>Magnetic fields</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Short circuit currents</topic><topic>Support vector machines</topic><topic>Systems stability</topic><topic>Temperature</topic><topic>Transformers</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Cai, Linglong</creatorcontrib><creatorcontrib>Ma, Zhiqin</creatorcontrib><creatorcontrib>Rao, Zhangquan</creatorcontrib><creatorcontrib>Shu, Xiang</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Li, Zhongxiang</creatorcontrib><creatorcontrib>Li, Xianqiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Hao</au><au>Cai, Linglong</au><au>Ma, Zhiqin</au><au>Rao, Zhangquan</au><au>Shu, Xiang</au><au>Jiang, Shuo</au><au>Li, Zhongxiang</au><au>Li, Xianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>1716</spage><pages>1716-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Being a vital component of electrical power systems, transformers significantly influence the system stability and reliability of power supplies. Damage to transformers may lead to significant economic losses. The efficient identification of transformer faults holds paramount importance for the stability and security of power grids. The existing methods for identifying transformer faults include oil chromatography analysis, temperature assessment, frequency response analysis, vibration characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this paper, we propose a method to identify external short-circuit faults of power transformers based on fault recording data on short-circuit currents. It involves analyzing the current signals of various windings during faults, extracting appropriate features, and utilizing a classification algorithm based on a support vector machine (SVM) to determine fault types and locations. The influence of different kernel functions on the classification accuracy of SVM is discussed. The results indicate that this method can proficiently identify the type and location of external short-circuit faults in transformers, achieving an accuracy rate of 98.3%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13091716</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-05, Vol.13 (9), p.1716
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3053158202
source MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library
subjects Accuracy
Algorithms
Analysis
Artificial intelligence
China
Classification
Coils (windings)
Economic impact
Electric power supplies
Electric power systems
Electric properties
Electric transformers
Fault detection
Faults
Frequency response
Identification
Identification methods
Kernel functions
Magnetic fields
Methods
Neural networks
Performance evaluation
Short circuit currents
Support vector machines
Systems stability
Temperature
Transformers
Vibration analysis
title A Method for Identifying External Short-Circuit Faults in Power Transformers Based on Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Identifying%20External%20Short-Circuit%20Faults%20in%20Power%20Transformers%20Based%20on%20Support%20Vector%20Machines&rft.jtitle=Electronics%20(Basel)&rft.au=Du,%20Hao&rft.date=2024-05-01&rft.volume=13&rft.issue=9&rft.spage=1716&rft.pages=1716-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13091716&rft_dat=%3Cgale_proqu%3EA793567515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053158202&rft_id=info:pmid/&rft_galeid=A793567515&rfr_iscdi=true