Raman and photoluminescence signal separation in Raman hyperspectral imagery including noise reduction
Raman hyperspectral imaging (RHSI) is a valuable tool for gaining crucial information about the chemical composition of materials. However, obtaining clear Raman signals is not always a trivial task. Raw Raman signals can be susceptible to photoluminescence interference and noise. Hence, the preproc...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2024-05, Vol.55 (5), p.598-614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 5 |
container_start_page | 598 |
container_title | Journal of Raman spectroscopy |
container_volume | 55 |
creator | Goedhart, Jonne J. Kuipers, Thijs P. Papadakis, Vassilis M. |
description | Raman hyperspectral imaging (RHSI) is a valuable tool for gaining crucial information about the chemical composition of materials. However, obtaining clear Raman signals is not always a trivial task. Raw Raman signals can be susceptible to photoluminescence interference and noise. Hence, the preprocessing of RHSI is a required step for an effective and reliable chemical analysis. The main challenge is splitting the measured RHSI into separate Raman photoluminescence signals. Since no
golden‐standard
exists, it is non‐trivial to validate the correctness of the separated signals. While current state‐of‐the‐art preprocessing methods are effective, they require expert knowledge and involve unintuitive hyperparameters. Current approaches also lack generalizability, requiring extensive hyperparameter tuning on a case‐by‐case basis, while even then results are not always as expected. To this end, this work proposes a novel iterative RHSI preprocessing pipeline for splitting raw Raman signals and noise removal based on linear spline and radial basis function regression (IlsaRBF). The proposed method involves hyperparameters based on the physical properties of Raman spectroscopy, making them intuitive to use. This leads to more robust and stable hyperparameters, reducing the necessity for extensive hyperparameter tuning. A thorough evaluation shows that the proposed method outperforms the current state‐of‐the‐art. Additionally, a cosmic ray identification and removal algorithm (CRIR) and dynamic PCA for noise reduction are introduced. A standalone tool containing our proposed methods is provided, making RHSI preprocessing available to a broader audience, aiding further research and advancements in the field of Raman spectroscopy. |
doi_str_mv | 10.1002/jrs.6651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3053003408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053003408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-4df827d7b639b69bd7c55295f922313efe381e134b1eae45038a63dfd7264d003</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoOI6CPyHgxk3Hl6ZJ26UMfsGAILouafIyk6GT1KRdzL83w7h6i3fuhXsIuWewYgDl0z6mlZSCXZAFg7YuKiHEJVkAr-sCqkZek5uU9gDQtpItiP1SB-Wp8oaOuzCFYT44j0mj10iT23o10ISjimpywVPn6TmwO44Y04h6iplwB7XFeMxvPczG-S31wSWkEc2sT8FbcmXVkPDu_y7Jz-vL9_q92Hy-fayfN4UuBUxFZWxT1qbuJW972fam1kKUrbBtWXLG0SJvGDJe9QwVVgJ4oyQ31tSlrAwAX5KHc-8Yw--Maer2YY55ROo4CJ6JCppMPZ4pHUNKEW03xjwhHjsG3clily12J4v8D8V_Zo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053003408</pqid></control><display><type>article</type><title>Raman and photoluminescence signal separation in Raman hyperspectral imagery including noise reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goedhart, Jonne J. ; Kuipers, Thijs P. ; Papadakis, Vassilis M.</creator><creatorcontrib>Goedhart, Jonne J. ; Kuipers, Thijs P. ; Papadakis, Vassilis M.</creatorcontrib><description>Raman hyperspectral imaging (RHSI) is a valuable tool for gaining crucial information about the chemical composition of materials. However, obtaining clear Raman signals is not always a trivial task. Raw Raman signals can be susceptible to photoluminescence interference and noise. Hence, the preprocessing of RHSI is a required step for an effective and reliable chemical analysis. The main challenge is splitting the measured RHSI into separate Raman photoluminescence signals. Since no
golden‐standard
exists, it is non‐trivial to validate the correctness of the separated signals. While current state‐of‐the‐art preprocessing methods are effective, they require expert knowledge and involve unintuitive hyperparameters. Current approaches also lack generalizability, requiring extensive hyperparameter tuning on a case‐by‐case basis, while even then results are not always as expected. To this end, this work proposes a novel iterative RHSI preprocessing pipeline for splitting raw Raman signals and noise removal based on linear spline and radial basis function regression (IlsaRBF). The proposed method involves hyperparameters based on the physical properties of Raman spectroscopy, making them intuitive to use. This leads to more robust and stable hyperparameters, reducing the necessity for extensive hyperparameter tuning. A thorough evaluation shows that the proposed method outperforms the current state‐of‐the‐art. Additionally, a cosmic ray identification and removal algorithm (CRIR) and dynamic PCA for noise reduction are introduced. A standalone tool containing our proposed methods is provided, making RHSI preprocessing available to a broader audience, aiding further research and advancements in the field of Raman spectroscopy.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.6651</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Chemical analysis ; Chemical composition ; Cosmic radiation ; Cosmic rays ; Hyperspectral imaging ; Luminescence ; Noise reduction ; Photoluminescence ; Photons ; Physical properties ; Preprocessing ; Radial basis function ; Raman spectroscopy ; Spectroscopy ; Spectrum analysis ; Splitting ; Tuning</subject><ispartof>Journal of Raman spectroscopy, 2024-05, Vol.55 (5), p.598-614</ispartof><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-4df827d7b639b69bd7c55295f922313efe381e134b1eae45038a63dfd7264d003</cites><orcidid>0000-0003-4437-3469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Goedhart, Jonne J.</creatorcontrib><creatorcontrib>Kuipers, Thijs P.</creatorcontrib><creatorcontrib>Papadakis, Vassilis M.</creatorcontrib><title>Raman and photoluminescence signal separation in Raman hyperspectral imagery including noise reduction</title><title>Journal of Raman spectroscopy</title><description>Raman hyperspectral imaging (RHSI) is a valuable tool for gaining crucial information about the chemical composition of materials. However, obtaining clear Raman signals is not always a trivial task. Raw Raman signals can be susceptible to photoluminescence interference and noise. Hence, the preprocessing of RHSI is a required step for an effective and reliable chemical analysis. The main challenge is splitting the measured RHSI into separate Raman photoluminescence signals. Since no
golden‐standard
exists, it is non‐trivial to validate the correctness of the separated signals. While current state‐of‐the‐art preprocessing methods are effective, they require expert knowledge and involve unintuitive hyperparameters. Current approaches also lack generalizability, requiring extensive hyperparameter tuning on a case‐by‐case basis, while even then results are not always as expected. To this end, this work proposes a novel iterative RHSI preprocessing pipeline for splitting raw Raman signals and noise removal based on linear spline and radial basis function regression (IlsaRBF). The proposed method involves hyperparameters based on the physical properties of Raman spectroscopy, making them intuitive to use. This leads to more robust and stable hyperparameters, reducing the necessity for extensive hyperparameter tuning. A thorough evaluation shows that the proposed method outperforms the current state‐of‐the‐art. Additionally, a cosmic ray identification and removal algorithm (CRIR) and dynamic PCA for noise reduction are introduced. A standalone tool containing our proposed methods is provided, making RHSI preprocessing available to a broader audience, aiding further research and advancements in the field of Raman spectroscopy.</description><subject>Algorithms</subject><subject>Chemical analysis</subject><subject>Chemical composition</subject><subject>Cosmic radiation</subject><subject>Cosmic rays</subject><subject>Hyperspectral imaging</subject><subject>Luminescence</subject><subject>Noise reduction</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Physical properties</subject><subject>Preprocessing</subject><subject>Radial basis function</subject><subject>Raman spectroscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Splitting</subject><subject>Tuning</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoOI6CPyHgxk3Hl6ZJ26UMfsGAILouafIyk6GT1KRdzL83w7h6i3fuhXsIuWewYgDl0z6mlZSCXZAFg7YuKiHEJVkAr-sCqkZek5uU9gDQtpItiP1SB-Wp8oaOuzCFYT44j0mj10iT23o10ISjimpywVPn6TmwO44Y04h6iplwB7XFeMxvPczG-S31wSWkEc2sT8FbcmXVkPDu_y7Jz-vL9_q92Hy-fayfN4UuBUxFZWxT1qbuJW972fam1kKUrbBtWXLG0SJvGDJe9QwVVgJ4oyQ31tSlrAwAX5KHc-8Yw--Maer2YY55ROo4CJ6JCppMPZ4pHUNKEW03xjwhHjsG3clily12J4v8D8V_Zo0</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Goedhart, Jonne J.</creator><creator>Kuipers, Thijs P.</creator><creator>Papadakis, Vassilis M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-4437-3469</orcidid></search><sort><creationdate>202405</creationdate><title>Raman and photoluminescence signal separation in Raman hyperspectral imagery including noise reduction</title><author>Goedhart, Jonne J. ; Kuipers, Thijs P. ; Papadakis, Vassilis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-4df827d7b639b69bd7c55295f922313efe381e134b1eae45038a63dfd7264d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Chemical analysis</topic><topic>Chemical composition</topic><topic>Cosmic radiation</topic><topic>Cosmic rays</topic><topic>Hyperspectral imaging</topic><topic>Luminescence</topic><topic>Noise reduction</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Physical properties</topic><topic>Preprocessing</topic><topic>Radial basis function</topic><topic>Raman spectroscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Splitting</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goedhart, Jonne J.</creatorcontrib><creatorcontrib>Kuipers, Thijs P.</creatorcontrib><creatorcontrib>Papadakis, Vassilis M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goedhart, Jonne J.</au><au>Kuipers, Thijs P.</au><au>Papadakis, Vassilis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman and photoluminescence signal separation in Raman hyperspectral imagery including noise reduction</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2024-05</date><risdate>2024</risdate><volume>55</volume><issue>5</issue><spage>598</spage><epage>614</epage><pages>598-614</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Raman hyperspectral imaging (RHSI) is a valuable tool for gaining crucial information about the chemical composition of materials. However, obtaining clear Raman signals is not always a trivial task. Raw Raman signals can be susceptible to photoluminescence interference and noise. Hence, the preprocessing of RHSI is a required step for an effective and reliable chemical analysis. The main challenge is splitting the measured RHSI into separate Raman photoluminescence signals. Since no
golden‐standard
exists, it is non‐trivial to validate the correctness of the separated signals. While current state‐of‐the‐art preprocessing methods are effective, they require expert knowledge and involve unintuitive hyperparameters. Current approaches also lack generalizability, requiring extensive hyperparameter tuning on a case‐by‐case basis, while even then results are not always as expected. To this end, this work proposes a novel iterative RHSI preprocessing pipeline for splitting raw Raman signals and noise removal based on linear spline and radial basis function regression (IlsaRBF). The proposed method involves hyperparameters based on the physical properties of Raman spectroscopy, making them intuitive to use. This leads to more robust and stable hyperparameters, reducing the necessity for extensive hyperparameter tuning. A thorough evaluation shows that the proposed method outperforms the current state‐of‐the‐art. Additionally, a cosmic ray identification and removal algorithm (CRIR) and dynamic PCA for noise reduction are introduced. A standalone tool containing our proposed methods is provided, making RHSI preprocessing available to a broader audience, aiding further research and advancements in the field of Raman spectroscopy.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.6651</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4437-3469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0486 |
ispartof | Journal of Raman spectroscopy, 2024-05, Vol.55 (5), p.598-614 |
issn | 0377-0486 1097-4555 |
language | eng |
recordid | cdi_proquest_journals_3053003408 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Chemical analysis Chemical composition Cosmic radiation Cosmic rays Hyperspectral imaging Luminescence Noise reduction Photoluminescence Photons Physical properties Preprocessing Radial basis function Raman spectroscopy Spectroscopy Spectrum analysis Splitting Tuning |
title | Raman and photoluminescence signal separation in Raman hyperspectral imagery including noise reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20and%20photoluminescence%20signal%20separation%20in%20Raman%20hyperspectral%20imagery%20including%20noise%20reduction&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Goedhart,%20Jonne%20J.&rft.date=2024-05&rft.volume=55&rft.issue=5&rft.spage=598&rft.epage=614&rft.pages=598-614&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.6651&rft_dat=%3Cproquest_cross%3E3053003408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053003408&rft_id=info:pmid/&rfr_iscdi=true |