An Improved and Optimized Random Forest Based Approach to Predict the Software Faults

Effective software fault prediction is crucial for minimizing errors during software development and preventing subsequent failures. This research introduces an enhanced Random Forest-based approach for predicting software faults, specifically focusing on the NASA JM1 dataset. The dataset comprises...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2024-06, Vol.5 (5), p.530, Article 530
Hauptverfasser: Thomas, Nikhil Saji, Kaliraj, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 530
container_title SN computer science
container_volume 5
creator Thomas, Nikhil Saji
Kaliraj, S.
description Effective software fault prediction is crucial for minimizing errors during software development and preventing subsequent failures. This research introduces an enhanced Random Forest-based approach for predicting software faults, specifically focusing on the NASA JM1 dataset. The dataset comprises 21 software metrics indicating the presence or absence of faults in a module, and it is utilized to evaluate the proposed approach. The study delves into the intricacies of the NASA dataset, detailing the cleaning process and addressing class imbalance through Synthetic Minority Over-sampling Technique (SMOTE). The core of our approach involves the implementation and fine-tuning of the Random Forest classifier, with a specific focus on optimizing hyperparameters to enhance predictive accuracy. In comparative evaluations with standard machine learning models, our proposed approach demonstrated superior performance, achieving an accuracy of 82.96% and an F1 score of 89.53%. Notably, we emphasize the significance of software defects and their potential to cause failures and crashes during software development, leading to substantial organizational losses. The paper provides a comprehensive examination of different aspects of the machine learning model, offering detailed insights, examples, and illustrative figures to enhance the understanding of our proposed approach.
doi_str_mv 10.1007/s42979-024-02764-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3052935894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052935894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229x-f958b3d3b61d1876b316775f22bb7f6007fb3599bd2bf698f689eacdd4553b603</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgqf0BVwHXo3lMksmyFquFQkXtOiSTxE7pPEymWv16oyPoysXlPjjn3HsPAOcYXWKExFXMiRQyQyRPIXieHY7AiHCOs0IicfynPgWTGLcIIcJQnnM2AutpAxd1F9pXZ6FuLFx1fVVXH6l7SG1bw3kbXOzhtY5pNu0SVJcb2LfwPjhblT3sNw4-tr5_08HBud7v-ngGTrzeRTf5yWOwnt88ze6y5ep2MZsus5IQeci8ZIWhlhqOLS4ENxRzIZgnxBjhefrNG8qkNJYYz2XheSGdLq3NGUskRMfgYtBNV73s05lq2-5Dk1YqihiRlBUyTygyoMrQxhicV12oah3eFUbqy0E1OKiSg-rbQXVIJDqQYgI3zy78Sv_D-gQkNnN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052935894</pqid></control><display><type>article</type><title>An Improved and Optimized Random Forest Based Approach to Predict the Software Faults</title><source>SpringerLink Journals</source><creator>Thomas, Nikhil Saji ; Kaliraj, S.</creator><creatorcontrib>Thomas, Nikhil Saji ; Kaliraj, S.</creatorcontrib><description>Effective software fault prediction is crucial for minimizing errors during software development and preventing subsequent failures. This research introduces an enhanced Random Forest-based approach for predicting software faults, specifically focusing on the NASA JM1 dataset. The dataset comprises 21 software metrics indicating the presence or absence of faults in a module, and it is utilized to evaluate the proposed approach. The study delves into the intricacies of the NASA dataset, detailing the cleaning process and addressing class imbalance through Synthetic Minority Over-sampling Technique (SMOTE). The core of our approach involves the implementation and fine-tuning of the Random Forest classifier, with a specific focus on optimizing hyperparameters to enhance predictive accuracy. In comparative evaluations with standard machine learning models, our proposed approach demonstrated superior performance, achieving an accuracy of 82.96% and an F1 score of 89.53%. Notably, we emphasize the significance of software defects and their potential to cause failures and crashes during software development, leading to substantial organizational losses. The paper provides a comprehensive examination of different aspects of the machine learning model, offering detailed insights, examples, and illustrative figures to enhance the understanding of our proposed approach.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-024-02764-x</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Accuracy ; Algorithms ; Classification ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Datasets ; Decision trees ; Defects ; Fault diagnosis ; Faults ; Feature selection ; Information Systems and Communication Service ; Literature reviews ; Machine learning ; Methods ; Missing data ; Organizational aspects ; Original Research ; Pacemakers ; Pattern Recognition and Graphics ; Regression analysis ; Software development ; Software engineering ; Software Engineering/Programming and Operating Systems ; Software upgrading ; Vision</subject><ispartof>SN computer science, 2024-06, Vol.5 (5), p.530, Article 530</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229x-f958b3d3b61d1876b316775f22bb7f6007fb3599bd2bf698f689eacdd4553b603</cites><orcidid>0000-0003-4212-8427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-024-02764-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42979-024-02764-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Thomas, Nikhil Saji</creatorcontrib><creatorcontrib>Kaliraj, S.</creatorcontrib><title>An Improved and Optimized Random Forest Based Approach to Predict the Software Faults</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Effective software fault prediction is crucial for minimizing errors during software development and preventing subsequent failures. This research introduces an enhanced Random Forest-based approach for predicting software faults, specifically focusing on the NASA JM1 dataset. The dataset comprises 21 software metrics indicating the presence or absence of faults in a module, and it is utilized to evaluate the proposed approach. The study delves into the intricacies of the NASA dataset, detailing the cleaning process and addressing class imbalance through Synthetic Minority Over-sampling Technique (SMOTE). The core of our approach involves the implementation and fine-tuning of the Random Forest classifier, with a specific focus on optimizing hyperparameters to enhance predictive accuracy. In comparative evaluations with standard machine learning models, our proposed approach demonstrated superior performance, achieving an accuracy of 82.96% and an F1 score of 89.53%. Notably, we emphasize the significance of software defects and their potential to cause failures and crashes during software development, leading to substantial organizational losses. The paper provides a comprehensive examination of different aspects of the machine learning model, offering detailed insights, examples, and illustrative figures to enhance the understanding of our proposed approach.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Defects</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Feature selection</subject><subject>Information Systems and Communication Service</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Missing data</subject><subject>Organizational aspects</subject><subject>Original Research</subject><subject>Pacemakers</subject><subject>Pattern Recognition and Graphics</subject><subject>Regression analysis</subject><subject>Software development</subject><subject>Software engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Software upgrading</subject><subject>Vision</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKAzEUDaJgqf0BVwHXo3lMksmyFquFQkXtOiSTxE7pPEymWv16oyPoysXlPjjn3HsPAOcYXWKExFXMiRQyQyRPIXieHY7AiHCOs0IicfynPgWTGLcIIcJQnnM2AutpAxd1F9pXZ6FuLFx1fVVXH6l7SG1bw3kbXOzhtY5pNu0SVJcb2LfwPjhblT3sNw4-tr5_08HBud7v-ngGTrzeRTf5yWOwnt88ze6y5ep2MZsus5IQeci8ZIWhlhqOLS4ENxRzIZgnxBjhefrNG8qkNJYYz2XheSGdLq3NGUskRMfgYtBNV73s05lq2-5Dk1YqihiRlBUyTygyoMrQxhicV12oah3eFUbqy0E1OKiSg-rbQXVIJDqQYgI3zy78Sv_D-gQkNnN0</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Thomas, Nikhil Saji</creator><creator>Kaliraj, S.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4212-8427</orcidid></search><sort><creationdate>20240601</creationdate><title>An Improved and Optimized Random Forest Based Approach to Predict the Software Faults</title><author>Thomas, Nikhil Saji ; Kaliraj, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229x-f958b3d3b61d1876b316775f22bb7f6007fb3599bd2bf698f689eacdd4553b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Defects</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Feature selection</topic><topic>Information Systems and Communication Service</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Missing data</topic><topic>Organizational aspects</topic><topic>Original Research</topic><topic>Pacemakers</topic><topic>Pattern Recognition and Graphics</topic><topic>Regression analysis</topic><topic>Software development</topic><topic>Software engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Software upgrading</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Nikhil Saji</creatorcontrib><creatorcontrib>Kaliraj, S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Nikhil Saji</au><au>Kaliraj, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved and Optimized Random Forest Based Approach to Predict the Software Faults</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>5</volume><issue>5</issue><spage>530</spage><pages>530-</pages><artnum>530</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Effective software fault prediction is crucial for minimizing errors during software development and preventing subsequent failures. This research introduces an enhanced Random Forest-based approach for predicting software faults, specifically focusing on the NASA JM1 dataset. The dataset comprises 21 software metrics indicating the presence or absence of faults in a module, and it is utilized to evaluate the proposed approach. The study delves into the intricacies of the NASA dataset, detailing the cleaning process and addressing class imbalance through Synthetic Minority Over-sampling Technique (SMOTE). The core of our approach involves the implementation and fine-tuning of the Random Forest classifier, with a specific focus on optimizing hyperparameters to enhance predictive accuracy. In comparative evaluations with standard machine learning models, our proposed approach demonstrated superior performance, achieving an accuracy of 82.96% and an F1 score of 89.53%. Notably, we emphasize the significance of software defects and their potential to cause failures and crashes during software development, leading to substantial organizational losses. The paper provides a comprehensive examination of different aspects of the machine learning model, offering detailed insights, examples, and illustrative figures to enhance the understanding of our proposed approach.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-024-02764-x</doi><orcidid>https://orcid.org/0000-0003-4212-8427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2661-8907
ispartof SN computer science, 2024-06, Vol.5 (5), p.530, Article 530
issn 2661-8907
2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_3052935894
source SpringerLink Journals
subjects Accuracy
Algorithms
Classification
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Datasets
Decision trees
Defects
Fault diagnosis
Faults
Feature selection
Information Systems and Communication Service
Literature reviews
Machine learning
Methods
Missing data
Organizational aspects
Original Research
Pacemakers
Pattern Recognition and Graphics
Regression analysis
Software development
Software engineering
Software Engineering/Programming and Operating Systems
Software upgrading
Vision
title An Improved and Optimized Random Forest Based Approach to Predict the Software Faults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20and%20Optimized%20Random%20Forest%20Based%20Approach%20to%20Predict%20the%20Software%20Faults&rft.jtitle=SN%20computer%20science&rft.au=Thomas,%20Nikhil%20Saji&rft.date=2024-06-01&rft.volume=5&rft.issue=5&rft.spage=530&rft.pages=530-&rft.artnum=530&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-024-02764-x&rft_dat=%3Cproquest_cross%3E3052935894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052935894&rft_id=info:pmid/&rfr_iscdi=true