In silico reproduction of the pathophysiology of in-stent restenosis

The occurrence of in-stent restenosis following percutaneous coronary intervention highlights the need for the creation of computational tools that can extract pathophysiological insights and optimize interventional procedures on a patient-specific basis. In light of this, a comprehensive framework...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Manjunatha, Kiran, Ranno, Anna, Shi, Jianye, Schaaps, Nicole, Nilcham, Pakhwan, Cornelissen, Anne, Vogt, Felix, Behr, Marek, Reese, Stefanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Manjunatha, Kiran
Ranno, Anna
Shi, Jianye
Schaaps, Nicole
Nilcham, Pakhwan
Cornelissen, Anne
Vogt, Felix
Behr, Marek
Reese, Stefanie
description The occurrence of in-stent restenosis following percutaneous coronary intervention highlights the need for the creation of computational tools that can extract pathophysiological insights and optimize interventional procedures on a patient-specific basis. In light of this, a comprehensive framework encompassing multiple physical phenomena is introduced in this work. This framework effectively captures the intricate interplay of chemical, mechanical, and biological factors. In addition, computational approaches for the extraction of hemodynamic indicators that modulate the severity of the restenotic process are devised. Thus, this marks a significant stride towards facilitating computer-assisted clinical methodologies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3052224454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052224454</sourcerecordid><originalsourceid>FETCH-proquest_journals_30522244543</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgWLT_EHBdiJNE3ftA9-5LqWmTUjIxky7696bgB7g6cO7hrlgBUh6qswLYsJJoEELA8QRay4Jdn56TG12LPJoQ8T21yaHn2PFkDQ9NshjsTA5H7OdFO19RMj7lfiGSox1bd81Ipvxxy_b32-vyqPLhZ8pZPeAUfZ5qKTQAKKWV_K_6ApD-Oz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052224454</pqid></control><display><type>article</type><title>In silico reproduction of the pathophysiology of in-stent restenosis</title><source>Free E- Journals</source><creator>Manjunatha, Kiran ; Ranno, Anna ; Shi, Jianye ; Schaaps, Nicole ; Nilcham, Pakhwan ; Cornelissen, Anne ; Vogt, Felix ; Behr, Marek ; Reese, Stefanie</creator><creatorcontrib>Manjunatha, Kiran ; Ranno, Anna ; Shi, Jianye ; Schaaps, Nicole ; Nilcham, Pakhwan ; Cornelissen, Anne ; Vogt, Felix ; Behr, Marek ; Reese, Stefanie</creatorcontrib><description>The occurrence of in-stent restenosis following percutaneous coronary intervention highlights the need for the creation of computational tools that can extract pathophysiological insights and optimize interventional procedures on a patient-specific basis. In light of this, a comprehensive framework encompassing multiple physical phenomena is introduced in this work. This framework effectively captures the intricate interplay of chemical, mechanical, and biological factors. In addition, computational approaches for the extraction of hemodynamic indicators that modulate the severity of the restenotic process are devised. Thus, this marks a significant stride towards facilitating computer-assisted clinical methodologies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hemodynamics ; Software ; Stents</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Manjunatha, Kiran</creatorcontrib><creatorcontrib>Ranno, Anna</creatorcontrib><creatorcontrib>Shi, Jianye</creatorcontrib><creatorcontrib>Schaaps, Nicole</creatorcontrib><creatorcontrib>Nilcham, Pakhwan</creatorcontrib><creatorcontrib>Cornelissen, Anne</creatorcontrib><creatorcontrib>Vogt, Felix</creatorcontrib><creatorcontrib>Behr, Marek</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><title>In silico reproduction of the pathophysiology of in-stent restenosis</title><title>arXiv.org</title><description>The occurrence of in-stent restenosis following percutaneous coronary intervention highlights the need for the creation of computational tools that can extract pathophysiological insights and optimize interventional procedures on a patient-specific basis. In light of this, a comprehensive framework encompassing multiple physical phenomena is introduced in this work. This framework effectively captures the intricate interplay of chemical, mechanical, and biological factors. In addition, computational approaches for the extraction of hemodynamic indicators that modulate the severity of the restenotic process are devised. Thus, this marks a significant stride towards facilitating computer-assisted clinical methodologies.</description><subject>Hemodynamics</subject><subject>Software</subject><subject>Stents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMsKwjAQRYMgWLT_EHBdiJNE3ftA9-5LqWmTUjIxky7696bgB7g6cO7hrlgBUh6qswLYsJJoEELA8QRay4Jdn56TG12LPJoQ8T21yaHn2PFkDQ9NshjsTA5H7OdFO19RMj7lfiGSox1bd81Ipvxxy_b32-vyqPLhZ8pZPeAUfZ5qKTQAKKWV_K_6ApD-Oz4</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>Manjunatha, Kiran</creator><creator>Ranno, Anna</creator><creator>Shi, Jianye</creator><creator>Schaaps, Nicole</creator><creator>Nilcham, Pakhwan</creator><creator>Cornelissen, Anne</creator><creator>Vogt, Felix</creator><creator>Behr, Marek</creator><creator>Reese, Stefanie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240507</creationdate><title>In silico reproduction of the pathophysiology of in-stent restenosis</title><author>Manjunatha, Kiran ; Ranno, Anna ; Shi, Jianye ; Schaaps, Nicole ; Nilcham, Pakhwan ; Cornelissen, Anne ; Vogt, Felix ; Behr, Marek ; Reese, Stefanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30522244543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hemodynamics</topic><topic>Software</topic><topic>Stents</topic><toplevel>online_resources</toplevel><creatorcontrib>Manjunatha, Kiran</creatorcontrib><creatorcontrib>Ranno, Anna</creatorcontrib><creatorcontrib>Shi, Jianye</creatorcontrib><creatorcontrib>Schaaps, Nicole</creatorcontrib><creatorcontrib>Nilcham, Pakhwan</creatorcontrib><creatorcontrib>Cornelissen, Anne</creatorcontrib><creatorcontrib>Vogt, Felix</creatorcontrib><creatorcontrib>Behr, Marek</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjunatha, Kiran</au><au>Ranno, Anna</au><au>Shi, Jianye</au><au>Schaaps, Nicole</au><au>Nilcham, Pakhwan</au><au>Cornelissen, Anne</au><au>Vogt, Felix</au><au>Behr, Marek</au><au>Reese, Stefanie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>In silico reproduction of the pathophysiology of in-stent restenosis</atitle><jtitle>arXiv.org</jtitle><date>2024-05-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The occurrence of in-stent restenosis following percutaneous coronary intervention highlights the need for the creation of computational tools that can extract pathophysiological insights and optimize interventional procedures on a patient-specific basis. In light of this, a comprehensive framework encompassing multiple physical phenomena is introduced in this work. This framework effectively captures the intricate interplay of chemical, mechanical, and biological factors. In addition, computational approaches for the extraction of hemodynamic indicators that modulate the severity of the restenotic process are devised. Thus, this marks a significant stride towards facilitating computer-assisted clinical methodologies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3052224454
source Free E- Journals
subjects Hemodynamics
Software
Stents
title In silico reproduction of the pathophysiology of in-stent restenosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=In%20silico%20reproduction%20of%20the%20pathophysiology%20of%20in-stent%20restenosis&rft.jtitle=arXiv.org&rft.au=Manjunatha,%20Kiran&rft.date=2024-05-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3052224454%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052224454&rft_id=info:pmid/&rfr_iscdi=true