Photonic Crystal Beam Splitter Electrode in Kesterite Tandem Solar Cells: A Numerical Approach

The majority of numerical research on kesterite tandem solar cells has predominantly focused on a two‐terminal (2T) configuration that utilizes an ideal tunnel junction. Herein, the performance of kesterite tandem solar cells by introducing a photonic crystal structure (1DPC) as intermediate layer i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2024-05, Vol.221 (9), p.n/a
Hauptverfasser: Sánchez‐Lanuza, Miguel Barragán, Lillo‐Bravo, Isidoro, Lopez‐Alvarez, Jose A., Delgado‐Sanchez, Jose‐Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 221
creator Sánchez‐Lanuza, Miguel Barragán
Lillo‐Bravo, Isidoro
Lopez‐Alvarez, Jose A.
Delgado‐Sanchez, Jose‐Maria
description The majority of numerical research on kesterite tandem solar cells has predominantly focused on a two‐terminal (2T) configuration that utilizes an ideal tunnel junction. Herein, the performance of kesterite tandem solar cells by introducing a photonic crystal structure (1DPC) as intermediate layer in both three‐terminal (3T) and four‐terminal (4T) configurations is investigated. The photonic crystal (1DPC) is designed by stacking ITO and SiO2 layers with the terminal layer consisting of NiO. Optical properties of the 1DPC are modeled. This innovative approach offers several advantages. 1) The 1DPC selectively reflects lower wavelengths, effectively enhancing the short‐circuit current density (Jsc) of the top subcell, while the solar irradiance spectrum at higher‐wavelength optimum for the subcell is not affected. 2) The 1DPC serves as an intermediate electrode, needed for the 3T or 4T configuration. 3) Replacing the conventional Mo back contact with a NiO layer significantly boosts the open‐circuit voltage (Voc) of the top subcell. The findings demonstrate that these configurations exhibit higher performance compared to previously reported results. Furthermore, the utilization of 3T and 4T configurations, incorporating the 1DPC as an electrical beam splitter, provides an effective and accurate design compared to the 2T configuration using ideal tunnel junctions. This study explores the performance of kesterite tandem solar cells, focusing on three‐terminal (3T) and four‐terminal (4T) configurations using a photonic crystal (1DPC) as an intermediate layer with double functionality: electrode and beam splitter. The 1DPC selectively enhances Jsc in the top subcell without affecting the optimum solar irradiance incoming on the bottom subcell.
doi_str_mv 10.1002/pssa.202300734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3052209451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052209451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-55cf02259d02898124d0188daa6931aabb8a89d73e8826d1f4135b2277cd00e43</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqVw5WyJc8r6kcThFiJeooJKLVcs13bUVG4S7FSo_x5XReXIaVe73-ysBqFrAhMCQG_7ENSEAmUAOeMnaERERpOMkeL02AOco4sQ1gA85TkZoc_Zqhu6ttG48rswKIfvrdrgee-aYbAePzirB98Zi5sWv9oQZ81g8UK1xkasc8rjyjoX7nCJ37abuNbxSNn3vlN6dYnOauWCvfqtY_Tx-LConpPp-9NLVU4TTXPKkzTVNVCaFgaoKASh3AARwiiVFYwotVwKJQqTMysEzQypOWHpktI81wbAcjZGN4e70fZrG9-U627r22gpGaSUQsFTEqnJgdK-C8HbWva-2Si_kwTkPkO5z1AeM4yC4iD4bpzd_UPL2Xxe_ml_AH81dJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052209451</pqid></control><display><type>article</type><title>Photonic Crystal Beam Splitter Electrode in Kesterite Tandem Solar Cells: A Numerical Approach</title><source>Access via Wiley Online Library</source><creator>Sánchez‐Lanuza, Miguel Barragán ; Lillo‐Bravo, Isidoro ; Lopez‐Alvarez, Jose A. ; Delgado‐Sanchez, Jose‐Maria</creator><creatorcontrib>Sánchez‐Lanuza, Miguel Barragán ; Lillo‐Bravo, Isidoro ; Lopez‐Alvarez, Jose A. ; Delgado‐Sanchez, Jose‐Maria</creatorcontrib><description>The majority of numerical research on kesterite tandem solar cells has predominantly focused on a two‐terminal (2T) configuration that utilizes an ideal tunnel junction. Herein, the performance of kesterite tandem solar cells by introducing a photonic crystal structure (1DPC) as intermediate layer in both three‐terminal (3T) and four‐terminal (4T) configurations is investigated. The photonic crystal (1DPC) is designed by stacking ITO and SiO2 layers with the terminal layer consisting of NiO. Optical properties of the 1DPC are modeled. This innovative approach offers several advantages. 1) The 1DPC selectively reflects lower wavelengths, effectively enhancing the short‐circuit current density (Jsc) of the top subcell, while the solar irradiance spectrum at higher‐wavelength optimum for the subcell is not affected. 2) The 1DPC serves as an intermediate electrode, needed for the 3T or 4T configuration. 3) Replacing the conventional Mo back contact with a NiO layer significantly boosts the open‐circuit voltage (Voc) of the top subcell. The findings demonstrate that these configurations exhibit higher performance compared to previously reported results. Furthermore, the utilization of 3T and 4T configurations, incorporating the 1DPC as an electrical beam splitter, provides an effective and accurate design compared to the 2T configuration using ideal tunnel junctions. This study explores the performance of kesterite tandem solar cells, focusing on three‐terminal (3T) and four‐terminal (4T) configurations using a photonic crystal (1DPC) as an intermediate layer with double functionality: electrode and beam splitter. The 1DPC selectively enhances Jsc in the top subcell without affecting the optimum solar irradiance incoming on the bottom subcell.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300734</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>1DPC photonic crystal ; Configuration management ; Crystal structure ; Electric contacts ; Electrical junctions ; Electrodes ; Irradiance ; kesterite ; Nickel oxides ; Optical properties ; Photonic crystals ; Photovoltaic cells ; SCAPS ; Silicon dioxide ; Solar cells ; tandem solar cells ; thin‐film solar cells ; Tunnel junctions</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-05, Vol.221 (9), p.n/a</ispartof><rights>2024 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-55cf02259d02898124d0188daa6931aabb8a89d73e8826d1f4135b2277cd00e43</cites><orcidid>0000-0003-1107-5078 ; 0000-0002-6960-123X ; 0000-0003-2148-1774 ; 0000-0003-2126-0664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202300734$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202300734$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sánchez‐Lanuza, Miguel Barragán</creatorcontrib><creatorcontrib>Lillo‐Bravo, Isidoro</creatorcontrib><creatorcontrib>Lopez‐Alvarez, Jose A.</creatorcontrib><creatorcontrib>Delgado‐Sanchez, Jose‐Maria</creatorcontrib><title>Photonic Crystal Beam Splitter Electrode in Kesterite Tandem Solar Cells: A Numerical Approach</title><title>Physica status solidi. A, Applications and materials science</title><description>The majority of numerical research on kesterite tandem solar cells has predominantly focused on a two‐terminal (2T) configuration that utilizes an ideal tunnel junction. Herein, the performance of kesterite tandem solar cells by introducing a photonic crystal structure (1DPC) as intermediate layer in both three‐terminal (3T) and four‐terminal (4T) configurations is investigated. The photonic crystal (1DPC) is designed by stacking ITO and SiO2 layers with the terminal layer consisting of NiO. Optical properties of the 1DPC are modeled. This innovative approach offers several advantages. 1) The 1DPC selectively reflects lower wavelengths, effectively enhancing the short‐circuit current density (Jsc) of the top subcell, while the solar irradiance spectrum at higher‐wavelength optimum for the subcell is not affected. 2) The 1DPC serves as an intermediate electrode, needed for the 3T or 4T configuration. 3) Replacing the conventional Mo back contact with a NiO layer significantly boosts the open‐circuit voltage (Voc) of the top subcell. The findings demonstrate that these configurations exhibit higher performance compared to previously reported results. Furthermore, the utilization of 3T and 4T configurations, incorporating the 1DPC as an electrical beam splitter, provides an effective and accurate design compared to the 2T configuration using ideal tunnel junctions. This study explores the performance of kesterite tandem solar cells, focusing on three‐terminal (3T) and four‐terminal (4T) configurations using a photonic crystal (1DPC) as an intermediate layer with double functionality: electrode and beam splitter. The 1DPC selectively enhances Jsc in the top subcell without affecting the optimum solar irradiance incoming on the bottom subcell.</description><subject>1DPC photonic crystal</subject><subject>Configuration management</subject><subject>Crystal structure</subject><subject>Electric contacts</subject><subject>Electrical junctions</subject><subject>Electrodes</subject><subject>Irradiance</subject><subject>kesterite</subject><subject>Nickel oxides</subject><subject>Optical properties</subject><subject>Photonic crystals</subject><subject>Photovoltaic cells</subject><subject>SCAPS</subject><subject>Silicon dioxide</subject><subject>Solar cells</subject><subject>tandem solar cells</subject><subject>thin‐film solar cells</subject><subject>Tunnel junctions</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkEtPwzAQhC0EEqVw5WyJc8r6kcThFiJeooJKLVcs13bUVG4S7FSo_x5XReXIaVe73-ysBqFrAhMCQG_7ENSEAmUAOeMnaERERpOMkeL02AOco4sQ1gA85TkZoc_Zqhu6ttG48rswKIfvrdrgee-aYbAePzirB98Zi5sWv9oQZ81g8UK1xkasc8rjyjoX7nCJ37abuNbxSNn3vlN6dYnOauWCvfqtY_Tx-LConpPp-9NLVU4TTXPKkzTVNVCaFgaoKASh3AARwiiVFYwotVwKJQqTMysEzQypOWHpktI81wbAcjZGN4e70fZrG9-U627r22gpGaSUQsFTEqnJgdK-C8HbWva-2Si_kwTkPkO5z1AeM4yC4iD4bpzd_UPL2Xxe_ml_AH81dJE</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Sánchez‐Lanuza, Miguel Barragán</creator><creator>Lillo‐Bravo, Isidoro</creator><creator>Lopez‐Alvarez, Jose A.</creator><creator>Delgado‐Sanchez, Jose‐Maria</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1107-5078</orcidid><orcidid>https://orcid.org/0000-0002-6960-123X</orcidid><orcidid>https://orcid.org/0000-0003-2148-1774</orcidid><orcidid>https://orcid.org/0000-0003-2126-0664</orcidid></search><sort><creationdate>202405</creationdate><title>Photonic Crystal Beam Splitter Electrode in Kesterite Tandem Solar Cells: A Numerical Approach</title><author>Sánchez‐Lanuza, Miguel Barragán ; Lillo‐Bravo, Isidoro ; Lopez‐Alvarez, Jose A. ; Delgado‐Sanchez, Jose‐Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-55cf02259d02898124d0188daa6931aabb8a89d73e8826d1f4135b2277cd00e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1DPC photonic crystal</topic><topic>Configuration management</topic><topic>Crystal structure</topic><topic>Electric contacts</topic><topic>Electrical junctions</topic><topic>Electrodes</topic><topic>Irradiance</topic><topic>kesterite</topic><topic>Nickel oxides</topic><topic>Optical properties</topic><topic>Photonic crystals</topic><topic>Photovoltaic cells</topic><topic>SCAPS</topic><topic>Silicon dioxide</topic><topic>Solar cells</topic><topic>tandem solar cells</topic><topic>thin‐film solar cells</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez‐Lanuza, Miguel Barragán</creatorcontrib><creatorcontrib>Lillo‐Bravo, Isidoro</creatorcontrib><creatorcontrib>Lopez‐Alvarez, Jose A.</creatorcontrib><creatorcontrib>Delgado‐Sanchez, Jose‐Maria</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez‐Lanuza, Miguel Barragán</au><au>Lillo‐Bravo, Isidoro</au><au>Lopez‐Alvarez, Jose A.</au><au>Delgado‐Sanchez, Jose‐Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic Crystal Beam Splitter Electrode in Kesterite Tandem Solar Cells: A Numerical Approach</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-05</date><risdate>2024</risdate><volume>221</volume><issue>9</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The majority of numerical research on kesterite tandem solar cells has predominantly focused on a two‐terminal (2T) configuration that utilizes an ideal tunnel junction. Herein, the performance of kesterite tandem solar cells by introducing a photonic crystal structure (1DPC) as intermediate layer in both three‐terminal (3T) and four‐terminal (4T) configurations is investigated. The photonic crystal (1DPC) is designed by stacking ITO and SiO2 layers with the terminal layer consisting of NiO. Optical properties of the 1DPC are modeled. This innovative approach offers several advantages. 1) The 1DPC selectively reflects lower wavelengths, effectively enhancing the short‐circuit current density (Jsc) of the top subcell, while the solar irradiance spectrum at higher‐wavelength optimum for the subcell is not affected. 2) The 1DPC serves as an intermediate electrode, needed for the 3T or 4T configuration. 3) Replacing the conventional Mo back contact with a NiO layer significantly boosts the open‐circuit voltage (Voc) of the top subcell. The findings demonstrate that these configurations exhibit higher performance compared to previously reported results. Furthermore, the utilization of 3T and 4T configurations, incorporating the 1DPC as an electrical beam splitter, provides an effective and accurate design compared to the 2T configuration using ideal tunnel junctions. This study explores the performance of kesterite tandem solar cells, focusing on three‐terminal (3T) and four‐terminal (4T) configurations using a photonic crystal (1DPC) as an intermediate layer with double functionality: electrode and beam splitter. The 1DPC selectively enhances Jsc in the top subcell without affecting the optimum solar irradiance incoming on the bottom subcell.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300734</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1107-5078</orcidid><orcidid>https://orcid.org/0000-0002-6960-123X</orcidid><orcidid>https://orcid.org/0000-0003-2148-1774</orcidid><orcidid>https://orcid.org/0000-0003-2126-0664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2024-05, Vol.221 (9), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_3052209451
source Access via Wiley Online Library
subjects 1DPC photonic crystal
Configuration management
Crystal structure
Electric contacts
Electrical junctions
Electrodes
Irradiance
kesterite
Nickel oxides
Optical properties
Photonic crystals
Photovoltaic cells
SCAPS
Silicon dioxide
Solar cells
tandem solar cells
thin‐film solar cells
Tunnel junctions
title Photonic Crystal Beam Splitter Electrode in Kesterite Tandem Solar Cells: A Numerical Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20Crystal%20Beam%20Splitter%20Electrode%20in%20Kesterite%20Tandem%20Solar%20Cells:%20A%20Numerical%20Approach&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=S%C3%A1nchez%E2%80%90Lanuza,%20Miguel%20Barrag%C3%A1n&rft.date=2024-05&rft.volume=221&rft.issue=9&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300734&rft_dat=%3Cproquest_cross%3E3052209451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052209451&rft_id=info:pmid/&rfr_iscdi=true