Density estimation and regression analysis on hyperspheres in the presence of measurement error

This paper studies density estimation and regression analysis with data observed on a general unit hypersphere and contaminated by measurement errors. We establish novel density and regression estimators, and study their asymptotic properties such as the rates of convergence and asymptotic normality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2024-06, Vol.51 (2), p.513-556
Hauptverfasser: Jeon, Jeong Min, Van Keilegom, Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies density estimation and regression analysis with data observed on a general unit hypersphere and contaminated by measurement errors. We establish novel density and regression estimators, and study their asymptotic properties such as the rates of convergence and asymptotic normality. We also provide two types of asymptotic confidence intervals for both density and regression functions. One type is based on the asymptotic normality of their estimators and the other type is based on the empirical likelihood technique. We present practical details on the implementation of our method as well as simulation studies and real data analysis.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12684