An Optimal Regime of Energy Management for Smart Building Clusters With Electric Vehicles

Smart building clusters embedded with electric vehicles (EVs) have become a crucial system component in the process of the low-carbon and highly-efficient energy system transition. Effective utilization of the energy buffering capability of EVs is a promising solution to achieving a new optimal stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7619-7629
Hauptverfasser: Shi, Mengge, Wang, Han, Lyu, Cheng, Dong, Qianyu, Li, Xun, Jia, Youwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7629
container_issue 5
container_start_page 7619
container_title IEEE transactions on industrial informatics
container_volume 20
creator Shi, Mengge
Wang, Han
Lyu, Cheng
Dong, Qianyu
Li, Xun
Jia, Youwei
description Smart building clusters embedded with electric vehicles (EVs) have become a crucial system component in the process of the low-carbon and highly-efficient energy system transition. Effective utilization of the energy buffering capability of EVs is a promising solution to achieving a new optimal state in smart building energy management, which however casts a great challenge in tackling the intrinsic uncertainties of EVs. In this article, a novel optimal operating regime is proposed to facilitate the participation of SBC in the day-ahead energy and reserve ancillary service market. In considering that the unexpected departures of EV users can have a great impact on the energy scheduling of the charging stations, this article develops a segmented charging strategy for EVs in line with departure uncertainties. Moreover, a distributed peer-to-peer energy trading approach is designed, which is aimed at maximizing the benefits of smart buildings. To effectively solve the proposed operation problem, a fully distributed algorithm is proposed based on the alternating direction method of multipliers algorithm with a communication-less strategy. This algorithm enables multiple relevant parties to be effectively coordinated in the proposed regime. Extensive simulation results verify the effectiveness of the proposed operating regime and show the advantages of reducing the exchange power with the main grid and improving the convenience of EV users.
doi_str_mv 10.1109/TII.2024.3363059
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3052201018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443251</ieee_id><sourcerecordid>3052201018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-f211cc777aa13005d8e5aae9d9d106c9799440dea9bbbd04223921fcd8b5dedb3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45fzX1WKoClYoqQQExRY59SVOlSbGTof8eV2Vguhue9z4eQm4ZjBgD_bBeLEYcuBwJMRag9BkZMC1ZAqDgPPZKsURwEJfkKoQtgEhB6AH5njZ0te-qnanpG5bVDmlb0HmDvjzQV9OYEnfYdLRoPX3fGd_Rx76qXdWUdFb3oUMf6FfVbei8Rtv5ytJP3FS2xnBNLgpTB7z5q0Py8TRfz16S5ep5MZsuE8ul6pKCM2ZtmqbGMBGPdRNUxqB22jEYW51qLSU4NDrPcweSc6E5K6yb5Mqhy8WQ3J_m7n3702Posm3b-yauzKIHzoEBm0QKTpT1bQgei2zv49P-kDHIjgKzKDA7Csz-BMbI3SlSIeI_XErBFRO_e9hsEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052201018</pqid></control><display><type>article</type><title>An Optimal Regime of Energy Management for Smart Building Clusters With Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Mengge ; Wang, Han ; Lyu, Cheng ; Dong, Qianyu ; Li, Xun ; Jia, Youwei</creator><creatorcontrib>Shi, Mengge ; Wang, Han ; Lyu, Cheng ; Dong, Qianyu ; Li, Xun ; Jia, Youwei</creatorcontrib><description>Smart building clusters embedded with electric vehicles (EVs) have become a crucial system component in the process of the low-carbon and highly-efficient energy system transition. Effective utilization of the energy buffering capability of EVs is a promising solution to achieving a new optimal state in smart building energy management, which however casts a great challenge in tackling the intrinsic uncertainties of EVs. In this article, a novel optimal operating regime is proposed to facilitate the participation of SBC in the day-ahead energy and reserve ancillary service market. In considering that the unexpected departures of EV users can have a great impact on the energy scheduling of the charging stations, this article develops a segmented charging strategy for EVs in line with departure uncertainties. Moreover, a distributed peer-to-peer energy trading approach is designed, which is aimed at maximizing the benefits of smart buildings. To effectively solve the proposed operation problem, a fully distributed algorithm is proposed based on the alternating direction method of multipliers algorithm with a communication-less strategy. This algorithm enables multiple relevant parties to be effectively coordinated in the proposed regime. Extensive simulation results verify the effectiveness of the proposed operating regime and show the advantages of reducing the exchange power with the main grid and improving the convenience of EV users.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3363059</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Ancillary services ; Clusters ; Costs ; Electric vehicle (EV) ; Electric vehicle charging ; Electric vehicles ; Energy management ; energy-reserve market ; HVAC ; Optimization ; peer-to-peer (P2P) ; Real-time systems ; smart building ; Smart buildings ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7619-7629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-f211cc777aa13005d8e5aae9d9d106c9799440dea9bbbd04223921fcd8b5dedb3</cites><orcidid>0000-0002-8200-9134 ; 0000-0001-6443-8034 ; 0000-0002-5520-1198 ; 0000-0001-5785-1373 ; 0000-0003-3071-5552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Mengge</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Lyu, Cheng</creatorcontrib><creatorcontrib>Dong, Qianyu</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Jia, Youwei</creatorcontrib><title>An Optimal Regime of Energy Management for Smart Building Clusters With Electric Vehicles</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Smart building clusters embedded with electric vehicles (EVs) have become a crucial system component in the process of the low-carbon and highly-efficient energy system transition. Effective utilization of the energy buffering capability of EVs is a promising solution to achieving a new optimal state in smart building energy management, which however casts a great challenge in tackling the intrinsic uncertainties of EVs. In this article, a novel optimal operating regime is proposed to facilitate the participation of SBC in the day-ahead energy and reserve ancillary service market. In considering that the unexpected departures of EV users can have a great impact on the energy scheduling of the charging stations, this article develops a segmented charging strategy for EVs in line with departure uncertainties. Moreover, a distributed peer-to-peer energy trading approach is designed, which is aimed at maximizing the benefits of smart buildings. To effectively solve the proposed operation problem, a fully distributed algorithm is proposed based on the alternating direction method of multipliers algorithm with a communication-less strategy. This algorithm enables multiple relevant parties to be effectively coordinated in the proposed regime. Extensive simulation results verify the effectiveness of the proposed operating regime and show the advantages of reducing the exchange power with the main grid and improving the convenience of EV users.</description><subject>Algorithms</subject><subject>Ancillary services</subject><subject>Clusters</subject><subject>Costs</subject><subject>Electric vehicle (EV)</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Energy management</subject><subject>energy-reserve market</subject><subject>HVAC</subject><subject>Optimization</subject><subject>peer-to-peer (P2P)</subject><subject>Real-time systems</subject><subject>smart building</subject><subject>Smart buildings</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45fzX1WKoClYoqQQExRY59SVOlSbGTof8eV2Vguhue9z4eQm4ZjBgD_bBeLEYcuBwJMRag9BkZMC1ZAqDgPPZKsURwEJfkKoQtgEhB6AH5njZ0te-qnanpG5bVDmlb0HmDvjzQV9OYEnfYdLRoPX3fGd_Rx76qXdWUdFb3oUMf6FfVbei8Rtv5ytJP3FS2xnBNLgpTB7z5q0Py8TRfz16S5ep5MZsuE8ul6pKCM2ZtmqbGMBGPdRNUxqB22jEYW51qLSU4NDrPcweSc6E5K6yb5Mqhy8WQ3J_m7n3702Posm3b-yauzKIHzoEBm0QKTpT1bQgei2zv49P-kDHIjgKzKDA7Csz-BMbI3SlSIeI_XErBFRO_e9hsEw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Shi, Mengge</creator><creator>Wang, Han</creator><creator>Lyu, Cheng</creator><creator>Dong, Qianyu</creator><creator>Li, Xun</creator><creator>Jia, Youwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8200-9134</orcidid><orcidid>https://orcid.org/0000-0001-6443-8034</orcidid><orcidid>https://orcid.org/0000-0002-5520-1198</orcidid><orcidid>https://orcid.org/0000-0001-5785-1373</orcidid><orcidid>https://orcid.org/0000-0003-3071-5552</orcidid></search><sort><creationdate>20240501</creationdate><title>An Optimal Regime of Energy Management for Smart Building Clusters With Electric Vehicles</title><author>Shi, Mengge ; Wang, Han ; Lyu, Cheng ; Dong, Qianyu ; Li, Xun ; Jia, Youwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-f211cc777aa13005d8e5aae9d9d106c9799440dea9bbbd04223921fcd8b5dedb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Ancillary services</topic><topic>Clusters</topic><topic>Costs</topic><topic>Electric vehicle (EV)</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Energy management</topic><topic>energy-reserve market</topic><topic>HVAC</topic><topic>Optimization</topic><topic>peer-to-peer (P2P)</topic><topic>Real-time systems</topic><topic>smart building</topic><topic>Smart buildings</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Mengge</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Lyu, Cheng</creatorcontrib><creatorcontrib>Dong, Qianyu</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Jia, Youwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Mengge</au><au>Wang, Han</au><au>Lyu, Cheng</au><au>Dong, Qianyu</au><au>Li, Xun</au><au>Jia, Youwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Regime of Energy Management for Smart Building Clusters With Electric Vehicles</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7619</spage><epage>7629</epage><pages>7619-7629</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Smart building clusters embedded with electric vehicles (EVs) have become a crucial system component in the process of the low-carbon and highly-efficient energy system transition. Effective utilization of the energy buffering capability of EVs is a promising solution to achieving a new optimal state in smart building energy management, which however casts a great challenge in tackling the intrinsic uncertainties of EVs. In this article, a novel optimal operating regime is proposed to facilitate the participation of SBC in the day-ahead energy and reserve ancillary service market. In considering that the unexpected departures of EV users can have a great impact on the energy scheduling of the charging stations, this article develops a segmented charging strategy for EVs in line with departure uncertainties. Moreover, a distributed peer-to-peer energy trading approach is designed, which is aimed at maximizing the benefits of smart buildings. To effectively solve the proposed operation problem, a fully distributed algorithm is proposed based on the alternating direction method of multipliers algorithm with a communication-less strategy. This algorithm enables multiple relevant parties to be effectively coordinated in the proposed regime. Extensive simulation results verify the effectiveness of the proposed operating regime and show the advantages of reducing the exchange power with the main grid and improving the convenience of EV users.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3363059</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8200-9134</orcidid><orcidid>https://orcid.org/0000-0001-6443-8034</orcidid><orcidid>https://orcid.org/0000-0002-5520-1198</orcidid><orcidid>https://orcid.org/0000-0001-5785-1373</orcidid><orcidid>https://orcid.org/0000-0003-3071-5552</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7619-7629
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_3052201018
source IEEE Electronic Library (IEL)
subjects Algorithms
Ancillary services
Clusters
Costs
Electric vehicle (EV)
Electric vehicle charging
Electric vehicles
Energy management
energy-reserve market
HVAC
Optimization
peer-to-peer (P2P)
Real-time systems
smart building
Smart buildings
Stochastic processes
Uncertainty
title An Optimal Regime of Energy Management for Smart Building Clusters With Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Regime%20of%20Energy%20Management%20for%20Smart%20Building%20Clusters%20With%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Shi,%20Mengge&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7619&rft.epage=7629&rft.pages=7619-7629&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3363059&rft_dat=%3Cproquest_RIE%3E3052201018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052201018&rft_id=info:pmid/&rft_ieee_id=10443251&rfr_iscdi=true