Parameter Control Methods for Discrete Memristive Maps with Network Structure

Discrete memristors (DMs) have attracted increasing interest in recent years and can be applied in chaotic circuits and neuromorphic systems. To better enrich and enhance the kinetics and performance of DM maps, this article introduces two improved control methods to construct a series of DM maps wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7194-7204
Hauptverfasser: Yuan, Fang, Zhang, Shuting, Xing, Guibin, Deng, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7204
container_issue 5
container_start_page 7194
container_title IEEE transactions on industrial informatics
container_volume 20
creator Yuan, Fang
Zhang, Shuting
Xing, Guibin
Deng, Yue
description Discrete memristors (DMs) have attracted increasing interest in recent years and can be applied in chaotic circuits and neuromorphic systems. To better enrich and enhance the kinetics and performance of DM maps, this article introduces two improved control methods to construct a series of DM maps with different network typologies by coupling DM seed maps. Some specific examples are demonstrated to back up these methods. Due to the effect and specific constructs of memristors, the new coupling DM maps will have infinite invariant points with higher dimensions, whose advantages of larger parameter space and expended chaotic ranges are evaluated by dynamic simulations. Besides, to investigate the application of the proposed methods, these new DM maps are implemented on the DSP platform, and the pseudorandom number generator is designed, as well as their high randomness is indicated by the strict test results.
doi_str_mv 10.1109/TII.2024.3353798
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3052200694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418049</ieee_id><sourcerecordid>3052200694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-45f42e9ea6f152e99dfe888579ba6f732ae7b159890f14569108b33e60714db03</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvHjwEPKfOfiXZo9SvQquC9bwk6YSmNt06u7H437ulPXiax5v3ZuDH2DWHEedg7uaTyUiAUCMptcxNccIG3CieAmg4jVprnkoB8pxdeL8CkDlIM2Cz95LKDgNSMnabQG6dzDAs3cInjaPkofU1xW00O2p9aH-iLLc-2bVhmbxi2Dn6Sj4C9XXoCS_ZWVOuPV4d55B9Pj3Oxy_p9O15Mr6fprVQOqRKN0qgwTJruI7CLBosikLnpopWLkWJecW1KQw0XOnMcCgqKTGDnKtFBXLIbg93t-S-e_TBrlxPm_jSStBCAGRGxRQcUjU57wkbu6W2K-nXcrB7aDZCs3to9ggtVm4OlRYR_8UVL0AZ-QcvkmeO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052200694</pqid></control><display><type>article</type><title>Parameter Control Methods for Discrete Memristive Maps with Network Structure</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Fang ; Zhang, Shuting ; Xing, Guibin ; Deng, Yue</creator><creatorcontrib>Yuan, Fang ; Zhang, Shuting ; Xing, Guibin ; Deng, Yue</creatorcontrib><description>Discrete memristors (DMs) have attracted increasing interest in recent years and can be applied in chaotic circuits and neuromorphic systems. To better enrich and enhance the kinetics and performance of DM maps, this article introduces two improved control methods to construct a series of DM maps with different network typologies by coupling DM seed maps. Some specific examples are demonstrated to back up these methods. Due to the effect and specific constructs of memristors, the new coupling DM maps will have infinite invariant points with higher dimensions, whose advantages of larger parameter space and expended chaotic ranges are evaluated by dynamic simulations. Besides, to investigate the application of the proposed methods, these new DM maps are implemented on the DSP platform, and the pseudorandom number generator is designed, as well as their high randomness is indicated by the strict test results.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3353798</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Behavioral sciences ; Bidirectional parameter control ; chaotic behavior ; Chaotic communication ; Control methods ; Coupling ; Couplings ; discrete memristor (DM) ; Informatics ; Integrated circuit modeling ; Memristors ; Modulation ; Parameter estimation ; Parameters ; Pseudorandom ; unilateral parameter control</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7194-7204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-45f42e9ea6f152e99dfe888579ba6f732ae7b159890f14569108b33e60714db03</cites><orcidid>0000-0001-9963-5783 ; 0000-0002-5483-1948 ; 0000-0003-2017-6030 ; 0000-0002-3330-070X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10418049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Fang</creatorcontrib><creatorcontrib>Zhang, Shuting</creatorcontrib><creatorcontrib>Xing, Guibin</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><title>Parameter Control Methods for Discrete Memristive Maps with Network Structure</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Discrete memristors (DMs) have attracted increasing interest in recent years and can be applied in chaotic circuits and neuromorphic systems. To better enrich and enhance the kinetics and performance of DM maps, this article introduces two improved control methods to construct a series of DM maps with different network typologies by coupling DM seed maps. Some specific examples are demonstrated to back up these methods. Due to the effect and specific constructs of memristors, the new coupling DM maps will have infinite invariant points with higher dimensions, whose advantages of larger parameter space and expended chaotic ranges are evaluated by dynamic simulations. Besides, to investigate the application of the proposed methods, these new DM maps are implemented on the DSP platform, and the pseudorandom number generator is designed, as well as their high randomness is indicated by the strict test results.</description><subject>Behavioral sciences</subject><subject>Bidirectional parameter control</subject><subject>chaotic behavior</subject><subject>Chaotic communication</subject><subject>Control methods</subject><subject>Coupling</subject><subject>Couplings</subject><subject>discrete memristor (DM)</subject><subject>Informatics</subject><subject>Integrated circuit modeling</subject><subject>Memristors</subject><subject>Modulation</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Pseudorandom</subject><subject>unilateral parameter control</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvHjwEPKfOfiXZo9SvQquC9bwk6YSmNt06u7H437ulPXiax5v3ZuDH2DWHEedg7uaTyUiAUCMptcxNccIG3CieAmg4jVprnkoB8pxdeL8CkDlIM2Cz95LKDgNSMnabQG6dzDAs3cInjaPkofU1xW00O2p9aH-iLLc-2bVhmbxi2Dn6Sj4C9XXoCS_ZWVOuPV4d55B9Pj3Oxy_p9O15Mr6fprVQOqRKN0qgwTJruI7CLBosikLnpopWLkWJecW1KQw0XOnMcCgqKTGDnKtFBXLIbg93t-S-e_TBrlxPm_jSStBCAGRGxRQcUjU57wkbu6W2K-nXcrB7aDZCs3to9ggtVm4OlRYR_8UVL0AZ-QcvkmeO</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yuan, Fang</creator><creator>Zhang, Shuting</creator><creator>Xing, Guibin</creator><creator>Deng, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9963-5783</orcidid><orcidid>https://orcid.org/0000-0002-5483-1948</orcidid><orcidid>https://orcid.org/0000-0003-2017-6030</orcidid><orcidid>https://orcid.org/0000-0002-3330-070X</orcidid></search><sort><creationdate>20240501</creationdate><title>Parameter Control Methods for Discrete Memristive Maps with Network Structure</title><author>Yuan, Fang ; Zhang, Shuting ; Xing, Guibin ; Deng, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-45f42e9ea6f152e99dfe888579ba6f732ae7b159890f14569108b33e60714db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Behavioral sciences</topic><topic>Bidirectional parameter control</topic><topic>chaotic behavior</topic><topic>Chaotic communication</topic><topic>Control methods</topic><topic>Coupling</topic><topic>Couplings</topic><topic>discrete memristor (DM)</topic><topic>Informatics</topic><topic>Integrated circuit modeling</topic><topic>Memristors</topic><topic>Modulation</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Pseudorandom</topic><topic>unilateral parameter control</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Fang</creatorcontrib><creatorcontrib>Zhang, Shuting</creatorcontrib><creatorcontrib>Xing, Guibin</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Fang</au><au>Zhang, Shuting</au><au>Xing, Guibin</au><au>Deng, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Control Methods for Discrete Memristive Maps with Network Structure</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7194</spage><epage>7204</epage><pages>7194-7204</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Discrete memristors (DMs) have attracted increasing interest in recent years and can be applied in chaotic circuits and neuromorphic systems. To better enrich and enhance the kinetics and performance of DM maps, this article introduces two improved control methods to construct a series of DM maps with different network typologies by coupling DM seed maps. Some specific examples are demonstrated to back up these methods. Due to the effect and specific constructs of memristors, the new coupling DM maps will have infinite invariant points with higher dimensions, whose advantages of larger parameter space and expended chaotic ranges are evaluated by dynamic simulations. Besides, to investigate the application of the proposed methods, these new DM maps are implemented on the DSP platform, and the pseudorandom number generator is designed, as well as their high randomness is indicated by the strict test results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3353798</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9963-5783</orcidid><orcidid>https://orcid.org/0000-0002-5483-1948</orcidid><orcidid>https://orcid.org/0000-0003-2017-6030</orcidid><orcidid>https://orcid.org/0000-0002-3330-070X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7194-7204
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_3052200694
source IEEE Electronic Library (IEL)
subjects Behavioral sciences
Bidirectional parameter control
chaotic behavior
Chaotic communication
Control methods
Coupling
Couplings
discrete memristor (DM)
Informatics
Integrated circuit modeling
Memristors
Modulation
Parameter estimation
Parameters
Pseudorandom
unilateral parameter control
title Parameter Control Methods for Discrete Memristive Maps with Network Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Control%20Methods%20for%20Discrete%20Memristive%20Maps%20with%20Network%20Structure&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Yuan,%20Fang&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7194&rft.epage=7204&rft.pages=7194-7204&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3353798&rft_dat=%3Cproquest_RIE%3E3052200694%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052200694&rft_id=info:pmid/&rft_ieee_id=10418049&rfr_iscdi=true