Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units

In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7325-7334
Hauptverfasser: Pandey, Avinash Kumar, Kishor, Nand, Mohanty, Soumya R., Samuel, Paulson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7334
container_issue 5
container_start_page 7325
container_title IEEE transactions on industrial informatics
container_volume 20
creator Pandey, Avinash Kumar
Kishor, Nand
Mohanty, Soumya R.
Samuel, Paulson
description In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network.
doi_str_mv 10.1109/TII.2024.3359450
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3052200620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10433536</ieee_id><sourcerecordid>3052200620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45f-VjhEJLpAqWVoyW45whJSTFdkH8e1zagelOd897Jz2EXFKYUArlzbKqJgyYmHAuSyHhiIxoKWgKIOE49lLSlDPgp-TM-zUAz4GXI4JVH7Dr2lfsQzLT2y4k9xjQhHboE903ybTT3re2NfpvZAcXx8mqr3Wne4NN8oThe3DvyUsb3pKq_0IX0KV32sfd_TySbfDn5MTqzuPFoY7JavawnD6mi-d5Nb1dpIaVLKSi5lznGkudN1oKJmWdMWOZFbktaI0Z8qYoLVhBC54XPNOmYdpKSylKMDkfk-v93Y0bPrfog1oPW9fHl4qDZAwgiwrGBPaUcYP3Dq3auPZDux9FQe1kqihT7WSqg8wYudpHWkT8h4sI8Iz_At6EcGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052200620</pqid></control><display><type>article</type><title>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</title><source>IEEE Electronic Library (IEL)</source><creator>Pandey, Avinash Kumar ; Kishor, Nand ; Mohanty, Soumya R. ; Samuel, Paulson</creator><creatorcontrib>Pandey, Avinash Kumar ; Kishor, Nand ; Mohanty, Soumya R. ; Samuel, Paulson</creatorcontrib><description>In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3359450</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>CAD ; Classification ; Computer aided design ; Distributed generation ; Economic indicators ; Electric potential ; Electric power systems ; Empirical wavelet transform (EWT) ; Fault detection ; fault detection and classification ; Feature extraction ; Inverters ; low-voltage ride through (LVRT) ; Machine learning ; machine learning (ML) ; Modules ; Penetration resistance ; Principal component analysis ; protection modules ; Reactive power ; Relays ; Resistance ; Supervised learning ; Training ; Unbalance ; Voltage ; Wavelet transforms</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7325-7334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</citedby><cites>FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</cites><orcidid>0000-0003-0548-1651 ; 0000-0003-1721-872X ; 0000-0002-6325-6017 ; 0000-0003-0551-7730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10433536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10433536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pandey, Avinash Kumar</creatorcontrib><creatorcontrib>Kishor, Nand</creatorcontrib><creatorcontrib>Mohanty, Soumya R.</creatorcontrib><creatorcontrib>Samuel, Paulson</creatorcontrib><title>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network.</description><subject>CAD</subject><subject>Classification</subject><subject>Computer aided design</subject><subject>Distributed generation</subject><subject>Economic indicators</subject><subject>Electric potential</subject><subject>Electric power systems</subject><subject>Empirical wavelet transform (EWT)</subject><subject>Fault detection</subject><subject>fault detection and classification</subject><subject>Feature extraction</subject><subject>Inverters</subject><subject>low-voltage ride through (LVRT)</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Modules</subject><subject>Penetration resistance</subject><subject>Principal component analysis</subject><subject>protection modules</subject><subject>Reactive power</subject><subject>Relays</subject><subject>Resistance</subject><subject>Supervised learning</subject><subject>Training</subject><subject>Unbalance</subject><subject>Voltage</subject><subject>Wavelet transforms</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45f-VjhEJLpAqWVoyW45whJSTFdkH8e1zagelOd897Jz2EXFKYUArlzbKqJgyYmHAuSyHhiIxoKWgKIOE49lLSlDPgp-TM-zUAz4GXI4JVH7Dr2lfsQzLT2y4k9xjQhHboE903ybTT3re2NfpvZAcXx8mqr3Wne4NN8oThe3DvyUsb3pKq_0IX0KV32sfd_TySbfDn5MTqzuPFoY7JavawnD6mi-d5Nb1dpIaVLKSi5lznGkudN1oKJmWdMWOZFbktaI0Z8qYoLVhBC54XPNOmYdpKSylKMDkfk-v93Y0bPrfog1oPW9fHl4qDZAwgiwrGBPaUcYP3Dq3auPZDux9FQe1kqihT7WSqg8wYudpHWkT8h4sI8Iz_At6EcGo</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Pandey, Avinash Kumar</creator><creator>Kishor, Nand</creator><creator>Mohanty, Soumya R.</creator><creator>Samuel, Paulson</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0548-1651</orcidid><orcidid>https://orcid.org/0000-0003-1721-872X</orcidid><orcidid>https://orcid.org/0000-0002-6325-6017</orcidid><orcidid>https://orcid.org/0000-0003-0551-7730</orcidid></search><sort><creationdate>20240501</creationdate><title>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</title><author>Pandey, Avinash Kumar ; Kishor, Nand ; Mohanty, Soumya R. ; Samuel, Paulson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CAD</topic><topic>Classification</topic><topic>Computer aided design</topic><topic>Distributed generation</topic><topic>Economic indicators</topic><topic>Electric potential</topic><topic>Electric power systems</topic><topic>Empirical wavelet transform (EWT)</topic><topic>Fault detection</topic><topic>fault detection and classification</topic><topic>Feature extraction</topic><topic>Inverters</topic><topic>low-voltage ride through (LVRT)</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Modules</topic><topic>Penetration resistance</topic><topic>Principal component analysis</topic><topic>protection modules</topic><topic>Reactive power</topic><topic>Relays</topic><topic>Resistance</topic><topic>Supervised learning</topic><topic>Training</topic><topic>Unbalance</topic><topic>Voltage</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Avinash Kumar</creatorcontrib><creatorcontrib>Kishor, Nand</creatorcontrib><creatorcontrib>Mohanty, Soumya R.</creatorcontrib><creatorcontrib>Samuel, Paulson</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pandey, Avinash Kumar</au><au>Kishor, Nand</au><au>Mohanty, Soumya R.</au><au>Samuel, Paulson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7325</spage><epage>7334</epage><pages>7325-7334</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3359450</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0548-1651</orcidid><orcidid>https://orcid.org/0000-0003-1721-872X</orcidid><orcidid>https://orcid.org/0000-0002-6325-6017</orcidid><orcidid>https://orcid.org/0000-0003-0551-7730</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7325-7334
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_3052200620
source IEEE Electronic Library (IEL)
subjects CAD
Classification
Computer aided design
Distributed generation
Economic indicators
Electric potential
Electric power systems
Empirical wavelet transform (EWT)
Fault detection
fault detection and classification
Feature extraction
Inverters
low-voltage ride through (LVRT)
Machine learning
machine learning (ML)
Modules
Penetration resistance
Principal component analysis
protection modules
Reactive power
Relays
Resistance
Supervised learning
Training
Unbalance
Voltage
Wavelet transforms
title Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Fault%20Detection%20and%20Classification%20for%20an%20Unbalanced%20Network%20With%20Inverter-Based%20DG%20Units&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Pandey,%20Avinash%20Kumar&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7325&rft.epage=7334&rft.pages=7325-7334&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3359450&rft_dat=%3Cproquest_RIE%3E3052200620%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052200620&rft_id=info:pmid/&rft_ieee_id=10433536&rfr_iscdi=true