Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units
In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7325-7334 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7334 |
---|---|
container_issue | 5 |
container_start_page | 7325 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Pandey, Avinash Kumar Kishor, Nand Mohanty, Soumya R. Samuel, Paulson |
description | In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network. |
doi_str_mv | 10.1109/TII.2024.3359450 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3052200620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10433536</ieee_id><sourcerecordid>3052200620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45f-VjhEJLpAqWVoyW45whJSTFdkH8e1zagelOd897Jz2EXFKYUArlzbKqJgyYmHAuSyHhiIxoKWgKIOE49lLSlDPgp-TM-zUAz4GXI4JVH7Dr2lfsQzLT2y4k9xjQhHboE903ybTT3re2NfpvZAcXx8mqr3Wne4NN8oThe3DvyUsb3pKq_0IX0KV32sfd_TySbfDn5MTqzuPFoY7JavawnD6mi-d5Nb1dpIaVLKSi5lznGkudN1oKJmWdMWOZFbktaI0Z8qYoLVhBC54XPNOmYdpKSylKMDkfk-v93Y0bPrfog1oPW9fHl4qDZAwgiwrGBPaUcYP3Dq3auPZDux9FQe1kqihT7WSqg8wYudpHWkT8h4sI8Iz_At6EcGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052200620</pqid></control><display><type>article</type><title>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</title><source>IEEE Electronic Library (IEL)</source><creator>Pandey, Avinash Kumar ; Kishor, Nand ; Mohanty, Soumya R. ; Samuel, Paulson</creator><creatorcontrib>Pandey, Avinash Kumar ; Kishor, Nand ; Mohanty, Soumya R. ; Samuel, Paulson</creatorcontrib><description>In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3359450</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>CAD ; Classification ; Computer aided design ; Distributed generation ; Economic indicators ; Electric potential ; Electric power systems ; Empirical wavelet transform (EWT) ; Fault detection ; fault detection and classification ; Feature extraction ; Inverters ; low-voltage ride through (LVRT) ; Machine learning ; machine learning (ML) ; Modules ; Penetration resistance ; Principal component analysis ; protection modules ; Reactive power ; Relays ; Resistance ; Supervised learning ; Training ; Unbalance ; Voltage ; Wavelet transforms</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7325-7334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</citedby><cites>FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</cites><orcidid>0000-0003-0548-1651 ; 0000-0003-1721-872X ; 0000-0002-6325-6017 ; 0000-0003-0551-7730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10433536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10433536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pandey, Avinash Kumar</creatorcontrib><creatorcontrib>Kishor, Nand</creatorcontrib><creatorcontrib>Mohanty, Soumya R.</creatorcontrib><creatorcontrib>Samuel, Paulson</creatorcontrib><title>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network.</description><subject>CAD</subject><subject>Classification</subject><subject>Computer aided design</subject><subject>Distributed generation</subject><subject>Economic indicators</subject><subject>Electric potential</subject><subject>Electric power systems</subject><subject>Empirical wavelet transform (EWT)</subject><subject>Fault detection</subject><subject>fault detection and classification</subject><subject>Feature extraction</subject><subject>Inverters</subject><subject>low-voltage ride through (LVRT)</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Modules</subject><subject>Penetration resistance</subject><subject>Principal component analysis</subject><subject>protection modules</subject><subject>Reactive power</subject><subject>Relays</subject><subject>Resistance</subject><subject>Supervised learning</subject><subject>Training</subject><subject>Unbalance</subject><subject>Voltage</subject><subject>Wavelet transforms</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45f-VjhEJLpAqWVoyW45whJSTFdkH8e1zagelOd897Jz2EXFKYUArlzbKqJgyYmHAuSyHhiIxoKWgKIOE49lLSlDPgp-TM-zUAz4GXI4JVH7Dr2lfsQzLT2y4k9xjQhHboE903ybTT3re2NfpvZAcXx8mqr3Wne4NN8oThe3DvyUsb3pKq_0IX0KV32sfd_TySbfDn5MTqzuPFoY7JavawnD6mi-d5Nb1dpIaVLKSi5lznGkudN1oKJmWdMWOZFbktaI0Z8qYoLVhBC54XPNOmYdpKSylKMDkfk-v93Y0bPrfog1oPW9fHl4qDZAwgiwrGBPaUcYP3Dq3auPZDux9FQe1kqihT7WSqg8wYudpHWkT8h4sI8Iz_At6EcGo</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Pandey, Avinash Kumar</creator><creator>Kishor, Nand</creator><creator>Mohanty, Soumya R.</creator><creator>Samuel, Paulson</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0548-1651</orcidid><orcidid>https://orcid.org/0000-0003-1721-872X</orcidid><orcidid>https://orcid.org/0000-0002-6325-6017</orcidid><orcidid>https://orcid.org/0000-0003-0551-7730</orcidid></search><sort><creationdate>20240501</creationdate><title>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</title><author>Pandey, Avinash Kumar ; Kishor, Nand ; Mohanty, Soumya R. ; Samuel, Paulson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-4b33a7ae9a7da54255b62cf2f47f81be6e3d89f0f41837836acd2af5f11e50c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CAD</topic><topic>Classification</topic><topic>Computer aided design</topic><topic>Distributed generation</topic><topic>Economic indicators</topic><topic>Electric potential</topic><topic>Electric power systems</topic><topic>Empirical wavelet transform (EWT)</topic><topic>Fault detection</topic><topic>fault detection and classification</topic><topic>Feature extraction</topic><topic>Inverters</topic><topic>low-voltage ride through (LVRT)</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Modules</topic><topic>Penetration resistance</topic><topic>Principal component analysis</topic><topic>protection modules</topic><topic>Reactive power</topic><topic>Relays</topic><topic>Resistance</topic><topic>Supervised learning</topic><topic>Training</topic><topic>Unbalance</topic><topic>Voltage</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Avinash Kumar</creatorcontrib><creatorcontrib>Kishor, Nand</creatorcontrib><creatorcontrib>Mohanty, Soumya R.</creatorcontrib><creatorcontrib>Samuel, Paulson</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pandey, Avinash Kumar</au><au>Kishor, Nand</au><au>Mohanty, Soumya R.</au><au>Samuel, Paulson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7325</spage><epage>7334</epage><pages>7325-7334</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, a machine-learning-based fault detection and classification method is proposed. Two supervised learning-based protection modules are developed for the relays considered in the study-one to detect the fault and discriminate between the symmetrical or unsymmetrical nature of the fault and another to detect the faulty phase(s). A robust set of features using both relay voltage and current signals is utilized for developing the modules. The features are obtained using the multiresolution decomposition based on the empirical wavelet transform. The modules are tested on the unbalanced IEEE 13-node network integrated with inverter-based distributed generation systems capable of reactive power injection in the low-voltage ride-through mode of operation. Varying penetration levels and intermittent output of distributed generation, fault resistance, fault inception time, noise in the signals, and switching events occurring around the fault period are some of the unique operating scenarios considered to demonstrate the consistent performance of the relays. The simulations are performed in power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) and the protection modules are developed in MATLAB. The performance of the protection modules is evaluated using several metrics with respect to various classes of events occurring in the network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3359450</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0548-1651</orcidid><orcidid>https://orcid.org/0000-0003-1721-872X</orcidid><orcidid>https://orcid.org/0000-0002-6325-6017</orcidid><orcidid>https://orcid.org/0000-0003-0551-7730</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7325-7334 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_3052200620 |
source | IEEE Electronic Library (IEL) |
subjects | CAD Classification Computer aided design Distributed generation Economic indicators Electric potential Electric power systems Empirical wavelet transform (EWT) Fault detection fault detection and classification Feature extraction Inverters low-voltage ride through (LVRT) Machine learning machine learning (ML) Modules Penetration resistance Principal component analysis protection modules Reactive power Relays Resistance Supervised learning Training Unbalance Voltage Wavelet transforms |
title | Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Fault%20Detection%20and%20Classification%20for%20an%20Unbalanced%20Network%20With%20Inverter-Based%20DG%20Units&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Pandey,%20Avinash%20Kumar&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7325&rft.epage=7334&rft.pages=7325-7334&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3359450&rft_dat=%3Cproquest_RIE%3E3052200620%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052200620&rft_id=info:pmid/&rft_ieee_id=10433536&rfr_iscdi=true |