Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients

Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1767-1778
Hauptverfasser: Lee, Minji, Park, Hyeong-Yeong, Park, Wanjoo, Kim, Keun-Tae, Kim, Yun-Hee, Jeong, Ji-Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1778
container_issue
container_start_page 1767
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Lee, Minji
Park, Hyeong-Yeong
Park, Wanjoo
Kim, Keun-Tae
Kim, Yun-Hee
Jeong, Ji-Hoon
description Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.
doi_str_mv 10.1109/TNSRE.2024.3395133
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3052182635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10510310</ieee_id><doaj_id>oai_doaj_org_article_6b64b81eef34445f96c47233de54abe3</doaj_id><sourcerecordid>3049723205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-8360128239262a9d874af99c562886191b71ffdcf02162e8219928738e3a530f3</originalsourceid><addsrcrecordid>eNpdkVtv1DAQhSMEoqXwBxBCkXjhJYvtsR37EVahrbRcxG6fLScZr7zNxq2dPPDv8V6oEJKlsUbfOZqZUxRvKVlQSvSnzff1r2bBCOMLAC0owLPikgqhKsIoeX74A684MHJRvEppRwitpahfFhegpIKa1pfF9ts8TL7a2HRf3uCEMWxxxDCnshkT7tsByxXaOPpxW32xCftyGUNK1Xpud9hNZdNcl8vBpuSd7-zkw1jejT3Gcj3FcI_lz9zDcUqvixfODgnfnOtVcfe12SxvqtWP69vl51XVcQpTpUASyhQDzSSzulc1t07rTkimlKSatjV1ru9c3lAyVIxqzVQNCsEKIA6uituTbx_szjxEv7fxtwnWm2MjxK2xcfLdgEa2kreKIjrgnAunZcdrBtCj4LZFyF4fT14PMTzOmCaz96nDYbDHCxkgXGcBIyKjH_5Dd2GOY940U4JRxSQcKHaiusMNI7qnASkxh0jNMVJziNScI82i92frud1j_yT5m2EG3p0Aj4j_OApKIL8_9HuizA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052182635</pqid></control><display><type>article</type><title>Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Minji ; Park, Hyeong-Yeong ; Park, Wanjoo ; Kim, Keun-Tae ; Kim, Yun-Hee ; Jeong, Ji-Hoon</creator><creatorcontrib>Lee, Minji ; Park, Hyeong-Yeong ; Park, Wanjoo ; Kim, Keun-Tae ; Kim, Yun-Hee ; Jeong, Ji-Hoon</creatorcontrib><description>Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3395133</identifier><identifier>PMID: 38683717</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Aged ; Algorithms ; Brain-Computer Interfaces ; Classification ; cross-subject training ; EEG ; Electroencephalography ; Electroencephalography - methods ; Engines ; Ensemble learning ; Feature extraction ; Female ; Human-computer interface ; Humans ; Imagery, Psychotherapy - methods ; Imagination - physiology ; Interfaces ; Ischemia ; Ischemic Stroke - physiopathology ; Ischemic Stroke - rehabilitation ; Lesions ; Machine Learning ; Male ; Mental task performance ; Middle Aged ; motor imagery ; Motor task performance ; Motors ; multi-task heterogeneous ensemble learning ; Multitasking ; Neurology ; Psychomotor Performance ; Rehabilitation ; Robotics ; Statistical analysis ; Stroke ; Stroke (medical condition) ; Stroke - complications ; Stroke - physiopathology ; Stroke Rehabilitation - methods ; Task analysis ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1767-1778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-8360128239262a9d874af99c562886191b71ffdcf02162e8219928738e3a530f3</cites><orcidid>0000-0001-6940-2700 ; 0000-0003-4261-875X ; 0000-0003-2731-3915 ; 0000-0001-6943-4171 ; 0000-0001-6101-8851 ; 0000-0003-1467-4156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38683717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Minji</creatorcontrib><creatorcontrib>Park, Hyeong-Yeong</creatorcontrib><creatorcontrib>Park, Wanjoo</creatorcontrib><creatorcontrib>Kim, Keun-Tae</creatorcontrib><creatorcontrib>Kim, Yun-Hee</creatorcontrib><creatorcontrib>Jeong, Ji-Hoon</creatorcontrib><title>Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Brain-Computer Interfaces</subject><subject>Classification</subject><subject>cross-subject training</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Engines</subject><subject>Ensemble learning</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Human-computer interface</subject><subject>Humans</subject><subject>Imagery, Psychotherapy - methods</subject><subject>Imagination - physiology</subject><subject>Interfaces</subject><subject>Ischemia</subject><subject>Ischemic Stroke - physiopathology</subject><subject>Ischemic Stroke - rehabilitation</subject><subject>Lesions</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mental task performance</subject><subject>Middle Aged</subject><subject>motor imagery</subject><subject>Motor task performance</subject><subject>Motors</subject><subject>multi-task heterogeneous ensemble learning</subject><subject>Multitasking</subject><subject>Neurology</subject><subject>Psychomotor Performance</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Statistical analysis</subject><subject>Stroke</subject><subject>Stroke (medical condition)</subject><subject>Stroke - complications</subject><subject>Stroke - physiopathology</subject><subject>Stroke Rehabilitation - methods</subject><subject>Task analysis</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkVtv1DAQhSMEoqXwBxBCkXjhJYvtsR37EVahrbRcxG6fLScZr7zNxq2dPPDv8V6oEJKlsUbfOZqZUxRvKVlQSvSnzff1r2bBCOMLAC0owLPikgqhKsIoeX74A684MHJRvEppRwitpahfFhegpIKa1pfF9ts8TL7a2HRf3uCEMWxxxDCnshkT7tsByxXaOPpxW32xCftyGUNK1Xpud9hNZdNcl8vBpuSd7-zkw1jejT3Gcj3FcI_lz9zDcUqvixfODgnfnOtVcfe12SxvqtWP69vl51XVcQpTpUASyhQDzSSzulc1t07rTkimlKSatjV1ru9c3lAyVIxqzVQNCsEKIA6uituTbx_szjxEv7fxtwnWm2MjxK2xcfLdgEa2kreKIjrgnAunZcdrBtCj4LZFyF4fT14PMTzOmCaz96nDYbDHCxkgXGcBIyKjH_5Dd2GOY940U4JRxSQcKHaiusMNI7qnASkxh0jNMVJziNScI82i92frud1j_yT5m2EG3p0Aj4j_OApKIL8_9HuizA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Minji</creator><creator>Park, Hyeong-Yeong</creator><creator>Park, Wanjoo</creator><creator>Kim, Keun-Tae</creator><creator>Kim, Yun-Hee</creator><creator>Jeong, Ji-Hoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6940-2700</orcidid><orcidid>https://orcid.org/0000-0003-4261-875X</orcidid><orcidid>https://orcid.org/0000-0003-2731-3915</orcidid><orcidid>https://orcid.org/0000-0001-6943-4171</orcidid><orcidid>https://orcid.org/0000-0001-6101-8851</orcidid><orcidid>https://orcid.org/0000-0003-1467-4156</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients</title><author>Lee, Minji ; Park, Hyeong-Yeong ; Park, Wanjoo ; Kim, Keun-Tae ; Kim, Yun-Hee ; Jeong, Ji-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-8360128239262a9d874af99c562886191b71ffdcf02162e8219928738e3a530f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Brain-Computer Interfaces</topic><topic>Classification</topic><topic>cross-subject training</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Engines</topic><topic>Ensemble learning</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Human-computer interface</topic><topic>Humans</topic><topic>Imagery, Psychotherapy - methods</topic><topic>Imagination - physiology</topic><topic>Interfaces</topic><topic>Ischemia</topic><topic>Ischemic Stroke - physiopathology</topic><topic>Ischemic Stroke - rehabilitation</topic><topic>Lesions</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mental task performance</topic><topic>Middle Aged</topic><topic>motor imagery</topic><topic>Motor task performance</topic><topic>Motors</topic><topic>multi-task heterogeneous ensemble learning</topic><topic>Multitasking</topic><topic>Neurology</topic><topic>Psychomotor Performance</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Statistical analysis</topic><topic>Stroke</topic><topic>Stroke (medical condition)</topic><topic>Stroke - complications</topic><topic>Stroke - physiopathology</topic><topic>Stroke Rehabilitation - methods</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Minji</creatorcontrib><creatorcontrib>Park, Hyeong-Yeong</creatorcontrib><creatorcontrib>Park, Wanjoo</creatorcontrib><creatorcontrib>Kim, Keun-Tae</creatorcontrib><creatorcontrib>Kim, Yun-Hee</creatorcontrib><creatorcontrib>Jeong, Ji-Hoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Minji</au><au>Park, Hyeong-Yeong</au><au>Park, Wanjoo</au><au>Kim, Keun-Tae</au><au>Kim, Yun-Hee</au><au>Jeong, Ji-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1767</spage><epage>1778</epage><pages>1767-1778</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38683717</pmid><doi>10.1109/TNSRE.2024.3395133</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6940-2700</orcidid><orcidid>https://orcid.org/0000-0003-4261-875X</orcidid><orcidid>https://orcid.org/0000-0003-2731-3915</orcidid><orcidid>https://orcid.org/0000-0001-6943-4171</orcidid><orcidid>https://orcid.org/0000-0001-6101-8851</orcidid><orcidid>https://orcid.org/0000-0003-1467-4156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1767-1778
issn 1534-4320
1558-0210
1558-0210
language eng
recordid cdi_proquest_journals_3052182635
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adult
Aged
Algorithms
Brain-Computer Interfaces
Classification
cross-subject training
EEG
Electroencephalography
Electroencephalography - methods
Engines
Ensemble learning
Feature extraction
Female
Human-computer interface
Humans
Imagery, Psychotherapy - methods
Imagination - physiology
Interfaces
Ischemia
Ischemic Stroke - physiopathology
Ischemic Stroke - rehabilitation
Lesions
Machine Learning
Male
Mental task performance
Middle Aged
motor imagery
Motor task performance
Motors
multi-task heterogeneous ensemble learning
Multitasking
Neurology
Psychomotor Performance
Rehabilitation
Robotics
Statistical analysis
Stroke
Stroke (medical condition)
Stroke - complications
Stroke - physiopathology
Stroke Rehabilitation - methods
Task analysis
Training
title Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Task%20Heterogeneous%20Ensemble%20Learning-Based%20Cross-Subject%20EEG%20Classification%20Under%20Stroke%20Patients&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Lee,%20Minji&rft.date=2024&rft.volume=32&rft.spage=1767&rft.epage=1778&rft.pages=1767-1778&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3395133&rft_dat=%3Cproquest_doaj_%3E3049723205%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052182635&rft_id=info:pmid/38683717&rft_ieee_id=10510310&rft_doaj_id=oai_doaj_org_article_6b64b81eef34445f96c47233de54abe3&rfr_iscdi=true