A quantitative microscopic view on the gas‐phase‐dependent phase transformation from tetragonal to monoclinic ZrO2

ZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature‐ and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2024-07, Vol.107 (7), p.5036-5050
Hauptverfasser: Bekheet, Maged F., Schlicker, Lukas, Popescu, Radian, Riedel, Wiebke, Grünbacher, Matthias, Penner, Simon, Gurlo, Aleksander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5050
container_issue 7
container_start_page 5036
container_title Journal of the American Ceramic Society
container_volume 107
creator Bekheet, Maged F.
Schlicker, Lukas
Popescu, Radian
Riedel, Wiebke
Grünbacher, Matthias
Penner, Simon
Gurlo, Aleksander
description ZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature‐ and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature‐ and gas atmosphere‐dependent phase transformation of tetragonal t‐ZrO2 into monoclinic m‐ZrO2 during heating–cooling cycles from room temperature to 1273 K. Synchrotron‐based in situ X‐ray diffraction (XRD) studies in gas atmospheres of different reduction strengths, namely, 5 vol% H2/Ar, He, CO2, and air, revealed a stabilizing effect of inert and reductive environments, directly yielding different temperature onsets in the phase transformation during cooling (i.e., 435, 510, 710, and 793 K for 5 vol% H2/Ar, He, CO2, and air, respectively). Rietveld refinement shows a direct influence of the atmosphere on grain size, unit cell, and weight fraction of both polymorphs in the product composite matrix. The tetragonal‐to‐monoclinic (t–m) phase transformation is suppressed in the sample heated only up to ∼850 K, independent of the gas atmosphere. The results of ex situ XRD, transmission electron microscopic, electron paramagnetic resonance, and oxygen titration experiments confirmed that the phase transformation is accompanied by a change in the crystallite/particle size and the amount of lattice defects (i.e., oxygen vacancy). Due to the different onset temperatures, a complex interplay between kinetic limitations of phase transformation and grain sintering yields different pathways of the phase transformation and, eventually, very different final crystallite sizes of both t‐ZrO2 and m‐ZrO2.
doi_str_mv 10.1111/jace.19749
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3051962959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051962959</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2619-aa4c25fb176bd1a8fa516041b5aedf1d2cf2900553de015ed013e1bc1ef7664f3</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKFL7DEOcXrxGl9rKryUiUucOESOcm6TZXYqe226o1P4Bv5EtyWvczuaHY0GkLugY0gzuNaVTgCOc7kBRmAEJBwCfklGTDGeDKecHZNbrxfxxPkJBuQ3ZRutsqEJqjQ7JB2TeWsr2zfVHTX4J5aQ8MK6VL53--ffqU8RqyxR1OjCfTE0OCU8dq6LprEB-1sRwNGdmmNammwtLPGVm1jou2Xe-e35Eqr1uPdPw7J59P8Y_aSLN6fX2fTRdLzHGSiVFZxoUsY52UNaqKVgJxlUAqFtYaaV5pLxoRIa2QgsGaQIpQVoB7neabTIXk4-_bObrboQ7G2Wxcz-SJlAmTOpZBRBWfVvmnxUPSu6ZQ7FMCKY6nFsdTiVGrxNp3NT1v6B9zIcRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051962959</pqid></control><display><type>article</type><title>A quantitative microscopic view on the gas‐phase‐dependent phase transformation from tetragonal to monoclinic ZrO2</title><source>Access via Wiley Online Library</source><creator>Bekheet, Maged F. ; Schlicker, Lukas ; Popescu, Radian ; Riedel, Wiebke ; Grünbacher, Matthias ; Penner, Simon ; Gurlo, Aleksander</creator><creatorcontrib>Bekheet, Maged F. ; Schlicker, Lukas ; Popescu, Radian ; Riedel, Wiebke ; Grünbacher, Matthias ; Penner, Simon ; Gurlo, Aleksander</creatorcontrib><description>ZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature‐ and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature‐ and gas atmosphere‐dependent phase transformation of tetragonal t‐ZrO2 into monoclinic m‐ZrO2 during heating–cooling cycles from room temperature to 1273 K. Synchrotron‐based in situ X‐ray diffraction (XRD) studies in gas atmospheres of different reduction strengths, namely, 5 vol% H2/Ar, He, CO2, and air, revealed a stabilizing effect of inert and reductive environments, directly yielding different temperature onsets in the phase transformation during cooling (i.e., 435, 510, 710, and 793 K for 5 vol% H2/Ar, He, CO2, and air, respectively). Rietveld refinement shows a direct influence of the atmosphere on grain size, unit cell, and weight fraction of both polymorphs in the product composite matrix. The tetragonal‐to‐monoclinic (t–m) phase transformation is suppressed in the sample heated only up to ∼850 K, independent of the gas atmosphere. The results of ex situ XRD, transmission electron microscopic, electron paramagnetic resonance, and oxygen titration experiments confirmed that the phase transformation is accompanied by a change in the crystallite/particle size and the amount of lattice defects (i.e., oxygen vacancy). Due to the different onset temperatures, a complex interplay between kinetic limitations of phase transformation and grain sintering yields different pathways of the phase transformation and, eventually, very different final crystallite sizes of both t‐ZrO2 and m‐ZrO2.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.19749</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Cooling ; Crystal defects ; Crystal structure ; Crystallites ; defect chemistry ; dissolved hydrogen ; Electron paramagnetic resonance ; Grain size ; Lattice vacancies ; Monoclinic lattice ; oxide non‐stoichiometry ; Oxygen ; Phase transitions ; Quantitative analysis ; Room temperature ; Temperature ; Temperature dependence ; temperature‐programmed reduction and oxidation ; Titration ; Unit cell ; X-ray diffraction ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2024-07, Vol.107 (7), p.5036-5050</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of American Ceramic Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6561-2305 ; 0000-0001-7047-666X ; 0000-0001-7054-7587 ; 0000-0003-1778-0288 ; 0000-0002-4954-0716 ; 0000-0002-2561-5816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.19749$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.19749$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bekheet, Maged F.</creatorcontrib><creatorcontrib>Schlicker, Lukas</creatorcontrib><creatorcontrib>Popescu, Radian</creatorcontrib><creatorcontrib>Riedel, Wiebke</creatorcontrib><creatorcontrib>Grünbacher, Matthias</creatorcontrib><creatorcontrib>Penner, Simon</creatorcontrib><creatorcontrib>Gurlo, Aleksander</creatorcontrib><title>A quantitative microscopic view on the gas‐phase‐dependent phase transformation from tetragonal to monoclinic ZrO2</title><title>Journal of the American Ceramic Society</title><description>ZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature‐ and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature‐ and gas atmosphere‐dependent phase transformation of tetragonal t‐ZrO2 into monoclinic m‐ZrO2 during heating–cooling cycles from room temperature to 1273 K. Synchrotron‐based in situ X‐ray diffraction (XRD) studies in gas atmospheres of different reduction strengths, namely, 5 vol% H2/Ar, He, CO2, and air, revealed a stabilizing effect of inert and reductive environments, directly yielding different temperature onsets in the phase transformation during cooling (i.e., 435, 510, 710, and 793 K for 5 vol% H2/Ar, He, CO2, and air, respectively). Rietveld refinement shows a direct influence of the atmosphere on grain size, unit cell, and weight fraction of both polymorphs in the product composite matrix. The tetragonal‐to‐monoclinic (t–m) phase transformation is suppressed in the sample heated only up to ∼850 K, independent of the gas atmosphere. The results of ex situ XRD, transmission electron microscopic, electron paramagnetic resonance, and oxygen titration experiments confirmed that the phase transformation is accompanied by a change in the crystallite/particle size and the amount of lattice defects (i.e., oxygen vacancy). Due to the different onset temperatures, a complex interplay between kinetic limitations of phase transformation and grain sintering yields different pathways of the phase transformation and, eventually, very different final crystallite sizes of both t‐ZrO2 and m‐ZrO2.</description><subject>Carbon dioxide</subject><subject>Cooling</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>defect chemistry</subject><subject>dissolved hydrogen</subject><subject>Electron paramagnetic resonance</subject><subject>Grain size</subject><subject>Lattice vacancies</subject><subject>Monoclinic lattice</subject><subject>oxide non‐stoichiometry</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Quantitative analysis</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>temperature‐programmed reduction and oxidation</subject><subject>Titration</subject><subject>Unit cell</subject><subject>X-ray diffraction</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNotUMtOwzAQtBBIlMKFL7DEOcXrxGl9rKryUiUucOESOcm6TZXYqe226o1P4Bv5EtyWvczuaHY0GkLugY0gzuNaVTgCOc7kBRmAEJBwCfklGTDGeDKecHZNbrxfxxPkJBuQ3ZRutsqEJqjQ7JB2TeWsr2zfVHTX4J5aQ8MK6VL53--ffqU8RqyxR1OjCfTE0OCU8dq6LprEB-1sRwNGdmmNammwtLPGVm1jou2Xe-e35Eqr1uPdPw7J59P8Y_aSLN6fX2fTRdLzHGSiVFZxoUsY52UNaqKVgJxlUAqFtYaaV5pLxoRIa2QgsGaQIpQVoB7neabTIXk4-_bObrboQ7G2Wxcz-SJlAmTOpZBRBWfVvmnxUPSu6ZQ7FMCKY6nFsdTiVGrxNp3NT1v6B9zIcRU</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Bekheet, Maged F.</creator><creator>Schlicker, Lukas</creator><creator>Popescu, Radian</creator><creator>Riedel, Wiebke</creator><creator>Grünbacher, Matthias</creator><creator>Penner, Simon</creator><creator>Gurlo, Aleksander</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6561-2305</orcidid><orcidid>https://orcid.org/0000-0001-7047-666X</orcidid><orcidid>https://orcid.org/0000-0001-7054-7587</orcidid><orcidid>https://orcid.org/0000-0003-1778-0288</orcidid><orcidid>https://orcid.org/0000-0002-4954-0716</orcidid><orcidid>https://orcid.org/0000-0002-2561-5816</orcidid></search><sort><creationdate>202407</creationdate><title>A quantitative microscopic view on the gas‐phase‐dependent phase transformation from tetragonal to monoclinic ZrO2</title><author>Bekheet, Maged F. ; Schlicker, Lukas ; Popescu, Radian ; Riedel, Wiebke ; Grünbacher, Matthias ; Penner, Simon ; Gurlo, Aleksander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2619-aa4c25fb176bd1a8fa516041b5aedf1d2cf2900553de015ed013e1bc1ef7664f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Cooling</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>defect chemistry</topic><topic>dissolved hydrogen</topic><topic>Electron paramagnetic resonance</topic><topic>Grain size</topic><topic>Lattice vacancies</topic><topic>Monoclinic lattice</topic><topic>oxide non‐stoichiometry</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Quantitative analysis</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>temperature‐programmed reduction and oxidation</topic><topic>Titration</topic><topic>Unit cell</topic><topic>X-ray diffraction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekheet, Maged F.</creatorcontrib><creatorcontrib>Schlicker, Lukas</creatorcontrib><creatorcontrib>Popescu, Radian</creatorcontrib><creatorcontrib>Riedel, Wiebke</creatorcontrib><creatorcontrib>Grünbacher, Matthias</creatorcontrib><creatorcontrib>Penner, Simon</creatorcontrib><creatorcontrib>Gurlo, Aleksander</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekheet, Maged F.</au><au>Schlicker, Lukas</au><au>Popescu, Radian</au><au>Riedel, Wiebke</au><au>Grünbacher, Matthias</au><au>Penner, Simon</au><au>Gurlo, Aleksander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative microscopic view on the gas‐phase‐dependent phase transformation from tetragonal to monoclinic ZrO2</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2024-07</date><risdate>2024</risdate><volume>107</volume><issue>7</issue><spage>5036</spage><epage>5050</epage><pages>5036-5050</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>ZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature‐ and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature‐ and gas atmosphere‐dependent phase transformation of tetragonal t‐ZrO2 into monoclinic m‐ZrO2 during heating–cooling cycles from room temperature to 1273 K. Synchrotron‐based in situ X‐ray diffraction (XRD) studies in gas atmospheres of different reduction strengths, namely, 5 vol% H2/Ar, He, CO2, and air, revealed a stabilizing effect of inert and reductive environments, directly yielding different temperature onsets in the phase transformation during cooling (i.e., 435, 510, 710, and 793 K for 5 vol% H2/Ar, He, CO2, and air, respectively). Rietveld refinement shows a direct influence of the atmosphere on grain size, unit cell, and weight fraction of both polymorphs in the product composite matrix. The tetragonal‐to‐monoclinic (t–m) phase transformation is suppressed in the sample heated only up to ∼850 K, independent of the gas atmosphere. The results of ex situ XRD, transmission electron microscopic, electron paramagnetic resonance, and oxygen titration experiments confirmed that the phase transformation is accompanied by a change in the crystallite/particle size and the amount of lattice defects (i.e., oxygen vacancy). Due to the different onset temperatures, a complex interplay between kinetic limitations of phase transformation and grain sintering yields different pathways of the phase transformation and, eventually, very different final crystallite sizes of both t‐ZrO2 and m‐ZrO2.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.19749</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6561-2305</orcidid><orcidid>https://orcid.org/0000-0001-7047-666X</orcidid><orcidid>https://orcid.org/0000-0001-7054-7587</orcidid><orcidid>https://orcid.org/0000-0003-1778-0288</orcidid><orcidid>https://orcid.org/0000-0002-4954-0716</orcidid><orcidid>https://orcid.org/0000-0002-2561-5816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2024-07, Vol.107 (7), p.5036-5050
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_3051962959
source Access via Wiley Online Library
subjects Carbon dioxide
Cooling
Crystal defects
Crystal structure
Crystallites
defect chemistry
dissolved hydrogen
Electron paramagnetic resonance
Grain size
Lattice vacancies
Monoclinic lattice
oxide non‐stoichiometry
Oxygen
Phase transitions
Quantitative analysis
Room temperature
Temperature
Temperature dependence
temperature‐programmed reduction and oxidation
Titration
Unit cell
X-ray diffraction
Zirconium dioxide
title A quantitative microscopic view on the gas‐phase‐dependent phase transformation from tetragonal to monoclinic ZrO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20microscopic%20view%20on%20the%20gas%E2%80%90phase%E2%80%90dependent%20phase%20transformation%20from%20tetragonal%20to%20monoclinic%20ZrO2&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Bekheet,%20Maged%20F.&rft.date=2024-07&rft.volume=107&rft.issue=7&rft.spage=5036&rft.epage=5050&rft.pages=5036-5050&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.19749&rft_dat=%3Cproquest_wiley%3E3051962959%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051962959&rft_id=info:pmid/&rfr_iscdi=true