A HECKE ACTION ON -MODULES
We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$ -modules where G is a connected reductive group over an algebraically closed field of characteristic $p> 0$ , T a maximal torus of G and $G_1$ the Frobenius kernel of G . To define it, we...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2024-05, Vol.23 (3), p.1125-1167 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1167 |
---|---|
container_issue | 3 |
container_start_page | 1125 |
container_title | Journal of the Institute of Mathematics of Jussieu |
container_volume | 23 |
creator | Abe, Noriyuki |
description | We construct an action of the affine Hecke category on the principal block
$\mathrm {Rep}_0(G_1T)$
of
$G_1T$
-modules where
G
is a connected reductive group over an algebraically closed field of characteristic
$p> 0$
,
T
a maximal torus of
G
and
$G_1$
the Frobenius kernel of
G
. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel. |
doi_str_mv | 10.1017/S1474748023000130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051868905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051868905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</originalsourceid><addsrcrecordid>eNplUEFOwzAQtBBIlMID4BSJs-muvXGSYxRSWjWQQ9uz5Ti2RAWk2PTA70kpN7Qr7WhmtCMNY7cIDwiYzdZI2Tg5CAkAKOGMTUYq5RIknP9i4kf9kl3FuAMQSqQ4YXdlsqirVZ2U1WbZviTj8uf2cdvU62t24c1bdDd_d8q283pTLXjTPi2rsuFWSASOSpGw0GeUCtPl5LwkS0iqMOiM7bzroafcSSU6Q5QZ3_u-sOCNdQQuk1N2f_q7D8PnwcUvvRsO4WOM1BJSzFVeQDq68OSyYYgxOK_34fXdhG-NoI8V6H8VyB-E9Uk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051868905</pqid></control><display><type>article</type><title>A HECKE ACTION ON -MODULES</title><source>Cambridge University Press Journals Complete</source><creator>Abe, Noriyuki</creator><creatorcontrib>Abe, Noriyuki</creatorcontrib><description>We construct an action of the affine Hecke category on the principal block
$\mathrm {Rep}_0(G_1T)$
of
$G_1T$
-modules where
G
is a connected reductive group over an algebraically closed field of characteristic
$p> 0$
,
T
a maximal torus of
G
and
$G_1$
the Frobenius kernel of
G
. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748023000130</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algebra ; Combinatorial analysis ; Decomposition ; Modules ; Toruses</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2024-05, Vol.23 (3), p.1125-1167</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</citedby><cites>FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</cites><orcidid>0000-0002-5719-5908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abe, Noriyuki</creatorcontrib><title>A HECKE ACTION ON -MODULES</title><title>Journal of the Institute of Mathematics of Jussieu</title><description>We construct an action of the affine Hecke category on the principal block
$\mathrm {Rep}_0(G_1T)$
of
$G_1T$
-modules where
G
is a connected reductive group over an algebraically closed field of characteristic
$p> 0$
,
T
a maximal torus of
G
and
$G_1$
the Frobenius kernel of
G
. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Decomposition</subject><subject>Modules</subject><subject>Toruses</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplUEFOwzAQtBBIlMID4BSJs-muvXGSYxRSWjWQQ9uz5Ti2RAWk2PTA70kpN7Qr7WhmtCMNY7cIDwiYzdZI2Tg5CAkAKOGMTUYq5RIknP9i4kf9kl3FuAMQSqQ4YXdlsqirVZ2U1WbZviTj8uf2cdvU62t24c1bdDd_d8q283pTLXjTPi2rsuFWSASOSpGw0GeUCtPl5LwkS0iqMOiM7bzroafcSSU6Q5QZ3_u-sOCNdQQuk1N2f_q7D8PnwcUvvRsO4WOM1BJSzFVeQDq68OSyYYgxOK_34fXdhG-NoI8V6H8VyB-E9Uk0</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Abe, Noriyuki</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5719-5908</orcidid></search><sort><creationdate>20240501</creationdate><title>A HECKE ACTION ON -MODULES</title><author>Abe, Noriyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Decomposition</topic><topic>Modules</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Noriyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Noriyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A HECKE ACTION ON -MODULES</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>23</volume><issue>3</issue><spage>1125</spage><epage>1167</epage><pages>1125-1167</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We construct an action of the affine Hecke category on the principal block
$\mathrm {Rep}_0(G_1T)$
of
$G_1T$
-modules where
G
is a connected reductive group over an algebraically closed field of characteristic
$p> 0$
,
T
a maximal torus of
G
and
$G_1$
the Frobenius kernel of
G
. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748023000130</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-5719-5908</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-7480 |
ispartof | Journal of the Institute of Mathematics of Jussieu, 2024-05, Vol.23 (3), p.1125-1167 |
issn | 1474-7480 1475-3030 |
language | eng |
recordid | cdi_proquest_journals_3051868905 |
source | Cambridge University Press Journals Complete |
subjects | Algebra Combinatorial analysis Decomposition Modules Toruses |
title | A HECKE ACTION ON -MODULES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20HECKE%20ACTION%20ON%20-MODULES&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Abe,%20Noriyuki&rft.date=2024-05-01&rft.volume=23&rft.issue=3&rft.spage=1125&rft.epage=1167&rft.pages=1125-1167&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748023000130&rft_dat=%3Cproquest_cross%3E3051868905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051868905&rft_id=info:pmid/&rfr_iscdi=true |