A HECKE ACTION ON -MODULES

We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$ -modules where G is a connected reductive group over an algebraically closed field of characteristic $p> 0$ , T a maximal torus of G and $G_1$ the Frobenius kernel of G . To define it, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2024-05, Vol.23 (3), p.1125-1167
1. Verfasser: Abe, Noriyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1167
container_issue 3
container_start_page 1125
container_title Journal of the Institute of Mathematics of Jussieu
container_volume 23
creator Abe, Noriyuki
description We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$ -modules where G is a connected reductive group over an algebraically closed field of characteristic $p> 0$ , T a maximal torus of G and $G_1$ the Frobenius kernel of G . To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.
doi_str_mv 10.1017/S1474748023000130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051868905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051868905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</originalsourceid><addsrcrecordid>eNplUEFOwzAQtBBIlMID4BSJs-muvXGSYxRSWjWQQ9uz5Ti2RAWk2PTA70kpN7Qr7WhmtCMNY7cIDwiYzdZI2Tg5CAkAKOGMTUYq5RIknP9i4kf9kl3FuAMQSqQ4YXdlsqirVZ2U1WbZviTj8uf2cdvU62t24c1bdDd_d8q283pTLXjTPi2rsuFWSASOSpGw0GeUCtPl5LwkS0iqMOiM7bzroafcSSU6Q5QZ3_u-sOCNdQQuk1N2f_q7D8PnwcUvvRsO4WOM1BJSzFVeQDq68OSyYYgxOK_34fXdhG-NoI8V6H8VyB-E9Uk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051868905</pqid></control><display><type>article</type><title>A HECKE ACTION ON -MODULES</title><source>Cambridge University Press Journals Complete</source><creator>Abe, Noriyuki</creator><creatorcontrib>Abe, Noriyuki</creatorcontrib><description>We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$ -modules where G is a connected reductive group over an algebraically closed field of characteristic $p&gt; 0$ , T a maximal torus of G and $G_1$ the Frobenius kernel of G . To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748023000130</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algebra ; Combinatorial analysis ; Decomposition ; Modules ; Toruses</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2024-05, Vol.23 (3), p.1125-1167</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</citedby><cites>FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</cites><orcidid>0000-0002-5719-5908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abe, Noriyuki</creatorcontrib><title>A HECKE ACTION ON -MODULES</title><title>Journal of the Institute of Mathematics of Jussieu</title><description>We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$ -modules where G is a connected reductive group over an algebraically closed field of characteristic $p&gt; 0$ , T a maximal torus of G and $G_1$ the Frobenius kernel of G . To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Decomposition</subject><subject>Modules</subject><subject>Toruses</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplUEFOwzAQtBBIlMID4BSJs-muvXGSYxRSWjWQQ9uz5Ti2RAWk2PTA70kpN7Qr7WhmtCMNY7cIDwiYzdZI2Tg5CAkAKOGMTUYq5RIknP9i4kf9kl3FuAMQSqQ4YXdlsqirVZ2U1WbZviTj8uf2cdvU62t24c1bdDd_d8q283pTLXjTPi2rsuFWSASOSpGw0GeUCtPl5LwkS0iqMOiM7bzroafcSSU6Q5QZ3_u-sOCNdQQuk1N2f_q7D8PnwcUvvRsO4WOM1BJSzFVeQDq68OSyYYgxOK_34fXdhG-NoI8V6H8VyB-E9Uk0</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Abe, Noriyuki</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5719-5908</orcidid></search><sort><creationdate>20240501</creationdate><title>A HECKE ACTION ON -MODULES</title><author>Abe, Noriyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2310-16642c0d7452ab84ef34c41469a1eacbfed0d48e362ba447afdfd9c0face40e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Decomposition</topic><topic>Modules</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Noriyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Noriyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A HECKE ACTION ON -MODULES</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>23</volume><issue>3</issue><spage>1125</spage><epage>1167</epage><pages>1125-1167</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$ -modules where G is a connected reductive group over an algebraically closed field of characteristic $p&gt; 0$ , T a maximal torus of G and $G_1$ the Frobenius kernel of G . To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748023000130</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-5719-5908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-7480
ispartof Journal of the Institute of Mathematics of Jussieu, 2024-05, Vol.23 (3), p.1125-1167
issn 1474-7480
1475-3030
language eng
recordid cdi_proquest_journals_3051868905
source Cambridge University Press Journals Complete
subjects Algebra
Combinatorial analysis
Decomposition
Modules
Toruses
title A HECKE ACTION ON -MODULES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20HECKE%20ACTION%20ON%20-MODULES&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Abe,%20Noriyuki&rft.date=2024-05-01&rft.volume=23&rft.issue=3&rft.spage=1125&rft.epage=1167&rft.pages=1125-1167&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748023000130&rft_dat=%3Cproquest_cross%3E3051868905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051868905&rft_id=info:pmid/&rfr_iscdi=true