A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions

Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-05, Vol.15 (18), p.6661-6678
Hauptverfasser: May, Ann Marie, Dempsey, Jillian L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6678
container_issue 18
container_start_page 6661
container_title Chemical science (Cambridge)
container_volume 15
creator May, Ann Marie
Dempsey, Jillian L
description Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states. Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states.
doi_str_mv 10.1039/d3sc05268k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_3051831324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051831324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</originalsourceid><addsrcrecordid>eNpdkkuPFCEUhYnROJN2Nu41JG6MSSlw64UbM2mfsY0LxzWh4VLFWFW0QI_672XssX2wuZD7cXM4B0Luc_aUM5DPLCTDGtH2X26RU8FqXrUNyNvHvWAn5CylS1YWAG9Ed5ecQN-JpuHylIzndMFvFKOmwdHNh_XFczrhVTkPfhno5Ae92CqHasasJ2pGHQekOeolOYwUvxuf0dKUdcZEXYh0N4YczIizN-VCRG2yD0u6R-44PSU8u6kr8vn1q4v122rz8c279fmmMrWQuXIA2m1hKxwKx23HhEXNwJlSm7bvuWSyrq0E20mQjcXCdT1umxqlNJzDirw4zN3ttzNag0sRO6ld9LOOP1TQXv3bWfyohnClOGedbEVbJjy-mRDD1z2mrGafDE6TXjDskwJWDC7-FZ9X5NF_6GXYx6W875riPXAQdaGeHCgTQ0oR3VENZ-o6RPUSPq1_hfi-wA__1n9Ef0dWgAcHICZz7P75BfATDV6iEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051831324</pqid></control><display><type>article</type><title>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>May, Ann Marie ; Dempsey, Jillian L</creator><creatorcontrib>May, Ann Marie ; Dempsey, Jillian L</creatorcontrib><description>Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states. Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc05268k</identifier><identifier>PMID: 38725519</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Charge transfer ; Chemistry ; Coordination compounds ; Electron transfer ; Excitation ; Ligands ; Oxidation ; Photochemical reactions ; Photochemistry ; Principles ; Transition metal compounds ; Valence</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6661-6678</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</citedby><cites>FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</cites><orcidid>0000-0002-3330-1868 ; 0000-0002-9459-4166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38725519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>May, Ann Marie</creatorcontrib><creatorcontrib>Dempsey, Jillian L</creatorcontrib><title>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states. Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Electron transfer</subject><subject>Excitation</subject><subject>Ligands</subject><subject>Oxidation</subject><subject>Photochemical reactions</subject><subject>Photochemistry</subject><subject>Principles</subject><subject>Transition metal compounds</subject><subject>Valence</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkkuPFCEUhYnROJN2Nu41JG6MSSlw64UbM2mfsY0LxzWh4VLFWFW0QI_672XssX2wuZD7cXM4B0Luc_aUM5DPLCTDGtH2X26RU8FqXrUNyNvHvWAn5CylS1YWAG9Ed5ecQN-JpuHylIzndMFvFKOmwdHNh_XFczrhVTkPfhno5Ae92CqHasasJ2pGHQekOeolOYwUvxuf0dKUdcZEXYh0N4YczIizN-VCRG2yD0u6R-44PSU8u6kr8vn1q4v122rz8c279fmmMrWQuXIA2m1hKxwKx23HhEXNwJlSm7bvuWSyrq0E20mQjcXCdT1umxqlNJzDirw4zN3ttzNag0sRO6ld9LOOP1TQXv3bWfyohnClOGedbEVbJjy-mRDD1z2mrGafDE6TXjDskwJWDC7-FZ9X5NF_6GXYx6W875riPXAQdaGeHCgTQ0oR3VENZ-o6RPUSPq1_hfi-wA__1n9Ef0dWgAcHICZz7P75BfATDV6iEA</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>May, Ann Marie</creator><creator>Dempsey, Jillian L</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3330-1868</orcidid><orcidid>https://orcid.org/0000-0002-9459-4166</orcidid></search><sort><creationdate>20240508</creationdate><title>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</title><author>May, Ann Marie ; Dempsey, Jillian L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Electron transfer</topic><topic>Excitation</topic><topic>Ligands</topic><topic>Oxidation</topic><topic>Photochemical reactions</topic><topic>Photochemistry</topic><topic>Principles</topic><topic>Transition metal compounds</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>May, Ann Marie</creatorcontrib><creatorcontrib>Dempsey, Jillian L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>May, Ann Marie</au><au>Dempsey, Jillian L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-08</date><risdate>2024</risdate><volume>15</volume><issue>18</issue><spage>6661</spage><epage>6678</epage><pages>6661-6678</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states. Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38725519</pmid><doi>10.1039/d3sc05268k</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3330-1868</orcidid><orcidid>https://orcid.org/0000-0002-9459-4166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6661-6678
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_journals_3051831324
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Charge transfer
Chemistry
Coordination compounds
Electron transfer
Excitation
Ligands
Oxidation
Photochemical reactions
Photochemistry
Principles
Transition metal compounds
Valence
title A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20era%20of%20LMCT:%20leveraging%20ligand-to-metal%20charge%20transfer%20excited%20states%20for%20photochemical%20reactions&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=May,%20Ann%20Marie&rft.date=2024-05-08&rft.volume=15&rft.issue=18&rft.spage=6661&rft.epage=6678&rft.pages=6661-6678&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc05268k&rft_dat=%3Cproquest_rsc_p%3E3051831324%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051831324&rft_id=info:pmid/38725519&rfr_iscdi=true