A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions
Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energ...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-05, Vol.15 (18), p.6661-6678 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6678 |
---|---|
container_issue | 18 |
container_start_page | 6661 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | May, Ann Marie Dempsey, Jillian L |
description | Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states. |
doi_str_mv | 10.1039/d3sc05268k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_3051831324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051831324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</originalsourceid><addsrcrecordid>eNpdkkuPFCEUhYnROJN2Nu41JG6MSSlw64UbM2mfsY0LxzWh4VLFWFW0QI_672XssX2wuZD7cXM4B0Luc_aUM5DPLCTDGtH2X26RU8FqXrUNyNvHvWAn5CylS1YWAG9Ed5ecQN-JpuHylIzndMFvFKOmwdHNh_XFczrhVTkPfhno5Ae92CqHasasJ2pGHQekOeolOYwUvxuf0dKUdcZEXYh0N4YczIizN-VCRG2yD0u6R-44PSU8u6kr8vn1q4v122rz8c279fmmMrWQuXIA2m1hKxwKx23HhEXNwJlSm7bvuWSyrq0E20mQjcXCdT1umxqlNJzDirw4zN3ttzNag0sRO6ld9LOOP1TQXv3bWfyohnClOGedbEVbJjy-mRDD1z2mrGafDE6TXjDskwJWDC7-FZ9X5NF_6GXYx6W875riPXAQdaGeHCgTQ0oR3VENZ-o6RPUSPq1_hfi-wA__1n9Ef0dWgAcHICZz7P75BfATDV6iEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051831324</pqid></control><display><type>article</type><title>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>May, Ann Marie ; Dempsey, Jillian L</creator><creatorcontrib>May, Ann Marie ; Dempsey, Jillian L</creatorcontrib><description>Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc05268k</identifier><identifier>PMID: 38725519</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Charge transfer ; Chemistry ; Coordination compounds ; Electron transfer ; Excitation ; Ligands ; Oxidation ; Photochemical reactions ; Photochemistry ; Principles ; Transition metal compounds ; Valence</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6661-6678</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</citedby><cites>FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</cites><orcidid>0000-0002-3330-1868 ; 0000-0002-9459-4166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38725519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>May, Ann Marie</creatorcontrib><creatorcontrib>Dempsey, Jillian L</creatorcontrib><title>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Electron transfer</subject><subject>Excitation</subject><subject>Ligands</subject><subject>Oxidation</subject><subject>Photochemical reactions</subject><subject>Photochemistry</subject><subject>Principles</subject><subject>Transition metal compounds</subject><subject>Valence</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkkuPFCEUhYnROJN2Nu41JG6MSSlw64UbM2mfsY0LxzWh4VLFWFW0QI_672XssX2wuZD7cXM4B0Luc_aUM5DPLCTDGtH2X26RU8FqXrUNyNvHvWAn5CylS1YWAG9Ed5ecQN-JpuHylIzndMFvFKOmwdHNh_XFczrhVTkPfhno5Ae92CqHasasJ2pGHQekOeolOYwUvxuf0dKUdcZEXYh0N4YczIizN-VCRG2yD0u6R-44PSU8u6kr8vn1q4v122rz8c279fmmMrWQuXIA2m1hKxwKx23HhEXNwJlSm7bvuWSyrq0E20mQjcXCdT1umxqlNJzDirw4zN3ttzNag0sRO6ld9LOOP1TQXv3bWfyohnClOGedbEVbJjy-mRDD1z2mrGafDE6TXjDskwJWDC7-FZ9X5NF_6GXYx6W875riPXAQdaGeHCgTQ0oR3VENZ-o6RPUSPq1_hfi-wA__1n9Ef0dWgAcHICZz7P75BfATDV6iEA</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>May, Ann Marie</creator><creator>Dempsey, Jillian L</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3330-1868</orcidid><orcidid>https://orcid.org/0000-0002-9459-4166</orcidid></search><sort><creationdate>20240508</creationdate><title>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</title><author>May, Ann Marie ; Dempsey, Jillian L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f33afb3b2fe2f1d702dea03fc2de5688190944d93d79395defe278eb54e99c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Electron transfer</topic><topic>Excitation</topic><topic>Ligands</topic><topic>Oxidation</topic><topic>Photochemical reactions</topic><topic>Photochemistry</topic><topic>Principles</topic><topic>Transition metal compounds</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>May, Ann Marie</creatorcontrib><creatorcontrib>Dempsey, Jillian L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>May, Ann Marie</au><au>Dempsey, Jillian L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-08</date><risdate>2024</risdate><volume>15</volume><issue>18</issue><spage>6661</spage><epage>6678</epage><pages>6661-6678</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Ligand-to-metal charge transfer (LMCT) excited states showcase promise in enabling photochemical reactions. This article details design principles to enable low energy LMCT excited states and notable examples that drivereactions from these states.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38725519</pmid><doi>10.1039/d3sc05268k</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3330-1868</orcidid><orcidid>https://orcid.org/0000-0002-9459-4166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6661-6678 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_journals_3051831324 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Charge transfer Chemistry Coordination compounds Electron transfer Excitation Ligands Oxidation Photochemical reactions Photochemistry Principles Transition metal compounds Valence |
title | A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20era%20of%20LMCT:%20leveraging%20ligand-to-metal%20charge%20transfer%20excited%20states%20for%20photochemical%20reactions&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=May,%20Ann%20Marie&rft.date=2024-05-08&rft.volume=15&rft.issue=18&rft.spage=6661&rft.epage=6678&rft.pages=6661-6678&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc05268k&rft_dat=%3Cproquest_rsc_p%3E3051831324%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051831324&rft_id=info:pmid/38725519&rfr_iscdi=true |