In Situ Structure Modulation of Cathode‐Electrolyte Interphase for High‐Performance Potassium‐Ion Battery
Manganese‐based layered oxide cathodes, particularly KxMnO2 (KMO), have shown great potential in potassium‐ion batteries (PIBs) due to their low cost, high theoretical capacities, and excellent thermal stability. However, Jahn‐Teller distortion, manganese dissolution, and interface instability of el...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-05, Vol.34 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Li, Fengchun Gu, Xin Cui, Akang Li, Yang Dong, Sijin Wu, Shuang Cheng, Zhenjie Yao, Qian Yang, Jian Wu, Mingbo |
description | Manganese‐based layered oxide cathodes, particularly KxMnO2 (KMO), have shown great potential in potassium‐ion batteries (PIBs) due to their low cost, high theoretical capacities, and excellent thermal stability. However, Jahn‐Teller distortion, manganese dissolution, and interface instability of electrode/electrolyte lead to structural instability and performance decay. Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the electrochemical performance of P3‐type KMO. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the cathode surface, enhancing reaction kinetics, preventing manganese dissolution, and stabilizing the structure. The P3‐KMO cathode with LiDFOB in the basic electrolyte exhibits significantly improved electrochemical performance, such as a remarkable Coulombic efficiency of ≈99.5% and high capacity retention of 78.6% after 300 cycles at 100 mA g−1. Moreover, the full cell of P3‐KMO||soft carbon demonstrates satisfactory specific capacity and energy density. This study emphasizes the importance of interface chemistry for PIBs.
Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the performance of K‐ion batteries. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the K0.5MnO2 cathode surface, which enhances the reaction kinetics, prevents manganese dissolution, and stabilizes the structure. In K||K0.5MnO2, the capacity retention is 78.6% at 100 mA g−1 after 300 cycles in the presence of LiDFOB. |
doi_str_mv | 10.1002/adfm.202313146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051824096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051824096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-b5823792f2a6294d6e7a734595e16212274acf8d42889382762a02b268586e103</originalsourceid><addsrcrecordid>eNqFkE9LwzAYxoMoOKdXzwHPncmbNk2Pc26uMHEwBW8la1PX0TYzSZHe_Ah-Rj-JGZN59PT-4fk978uD0DUlI0oI3MqibEZAgFFGQ36CBpRTHjAC4vTY09dzdGHtlhAaxywcIJ22eFW5Dq-c6XLXGYUfddHV0lW6xbrEE-k2ulDfn1_TWuXO6Lp3CqetU2a3kVbhUhs8r942XrFUxk-NbHOFl9pJa6uu8fvUW91J55H-Ep2Vsrbq6rcO0cts-jyZB4unh3QyXgQ5ozEP1pEAFidQguSQhAVXsfT_RkmkKAcKEIcyL0URghAJExBzkATWwEUkuKKEDdHNwXdn9HunrMu2ujOtP5kxElEBIUm4V40Oqtxoa40qs52pGmn6jJJsH2q2DzU7huqB5AB8VLXq_1Fn4_vZ4x_7A_Dzfag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051824096</pqid></control><display><type>article</type><title>In Situ Structure Modulation of Cathode‐Electrolyte Interphase for High‐Performance Potassium‐Ion Battery</title><source>Access via Wiley Online Library</source><creator>Li, Fengchun ; Gu, Xin ; Cui, Akang ; Li, Yang ; Dong, Sijin ; Wu, Shuang ; Cheng, Zhenjie ; Yao, Qian ; Yang, Jian ; Wu, Mingbo</creator><creatorcontrib>Li, Fengchun ; Gu, Xin ; Cui, Akang ; Li, Yang ; Dong, Sijin ; Wu, Shuang ; Cheng, Zhenjie ; Yao, Qian ; Yang, Jian ; Wu, Mingbo</creatorcontrib><description>Manganese‐based layered oxide cathodes, particularly KxMnO2 (KMO), have shown great potential in potassium‐ion batteries (PIBs) due to their low cost, high theoretical capacities, and excellent thermal stability. However, Jahn‐Teller distortion, manganese dissolution, and interface instability of electrode/electrolyte lead to structural instability and performance decay. Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the electrochemical performance of P3‐type KMO. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the cathode surface, enhancing reaction kinetics, preventing manganese dissolution, and stabilizing the structure. The P3‐KMO cathode with LiDFOB in the basic electrolyte exhibits significantly improved electrochemical performance, such as a remarkable Coulombic efficiency of ≈99.5% and high capacity retention of 78.6% after 300 cycles at 100 mA g−1. Moreover, the full cell of P3‐KMO||soft carbon demonstrates satisfactory specific capacity and energy density. This study emphasizes the importance of interface chemistry for PIBs.
Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the performance of K‐ion batteries. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the K0.5MnO2 cathode surface, which enhances the reaction kinetics, prevents manganese dissolution, and stabilizes the structure. In K||K0.5MnO2, the capacity retention is 78.6% at 100 mA g−1 after 300 cycles in the presence of LiDFOB.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202313146</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; cathode‐electrolyte interphase ; Cathodic dissolution ; Dissolution ; Electrochemical analysis ; electrolyte additive ; Interface stability ; Lithium ; lithium difluoro(oxalate) borate ; Manganese ; manganese‐based layered oxide cathode ; Potassium ; potassium‐ion battery ; Reaction kinetics ; Rechargeable batteries ; Structural stability ; Thermal stability</subject><ispartof>Advanced functional materials, 2024-05, Vol.34 (19), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-b5823792f2a6294d6e7a734595e16212274acf8d42889382762a02b268586e103</citedby><cites>FETCH-LOGICAL-c3176-b5823792f2a6294d6e7a734595e16212274acf8d42889382762a02b268586e103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202313146$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202313146$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Fengchun</creatorcontrib><creatorcontrib>Gu, Xin</creatorcontrib><creatorcontrib>Cui, Akang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Dong, Sijin</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><creatorcontrib>Cheng, Zhenjie</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><title>In Situ Structure Modulation of Cathode‐Electrolyte Interphase for High‐Performance Potassium‐Ion Battery</title><title>Advanced functional materials</title><description>Manganese‐based layered oxide cathodes, particularly KxMnO2 (KMO), have shown great potential in potassium‐ion batteries (PIBs) due to their low cost, high theoretical capacities, and excellent thermal stability. However, Jahn‐Teller distortion, manganese dissolution, and interface instability of electrode/electrolyte lead to structural instability and performance decay. Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the electrochemical performance of P3‐type KMO. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the cathode surface, enhancing reaction kinetics, preventing manganese dissolution, and stabilizing the structure. The P3‐KMO cathode with LiDFOB in the basic electrolyte exhibits significantly improved electrochemical performance, such as a remarkable Coulombic efficiency of ≈99.5% and high capacity retention of 78.6% after 300 cycles at 100 mA g−1. Moreover, the full cell of P3‐KMO||soft carbon demonstrates satisfactory specific capacity and energy density. This study emphasizes the importance of interface chemistry for PIBs.
Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the performance of K‐ion batteries. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the K0.5MnO2 cathode surface, which enhances the reaction kinetics, prevents manganese dissolution, and stabilizes the structure. In K||K0.5MnO2, the capacity retention is 78.6% at 100 mA g−1 after 300 cycles in the presence of LiDFOB.</description><subject>Cathodes</subject><subject>cathode‐electrolyte interphase</subject><subject>Cathodic dissolution</subject><subject>Dissolution</subject><subject>Electrochemical analysis</subject><subject>electrolyte additive</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>lithium difluoro(oxalate) borate</subject><subject>Manganese</subject><subject>manganese‐based layered oxide cathode</subject><subject>Potassium</subject><subject>potassium‐ion battery</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>Structural stability</subject><subject>Thermal stability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYxoMoOKdXzwHPncmbNk2Pc26uMHEwBW8la1PX0TYzSZHe_Ah-Rj-JGZN59PT-4fk978uD0DUlI0oI3MqibEZAgFFGQ36CBpRTHjAC4vTY09dzdGHtlhAaxywcIJ22eFW5Dq-c6XLXGYUfddHV0lW6xbrEE-k2ulDfn1_TWuXO6Lp3CqetU2a3kVbhUhs8r942XrFUxk-NbHOFl9pJa6uu8fvUW91J55H-Ep2Vsrbq6rcO0cts-jyZB4unh3QyXgQ5ozEP1pEAFidQguSQhAVXsfT_RkmkKAcKEIcyL0URghAJExBzkATWwEUkuKKEDdHNwXdn9HunrMu2ujOtP5kxElEBIUm4V40Oqtxoa40qs52pGmn6jJJsH2q2DzU7huqB5AB8VLXq_1Fn4_vZ4x_7A_Dzfag</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Fengchun</creator><creator>Gu, Xin</creator><creator>Cui, Akang</creator><creator>Li, Yang</creator><creator>Dong, Sijin</creator><creator>Wu, Shuang</creator><creator>Cheng, Zhenjie</creator><creator>Yao, Qian</creator><creator>Yang, Jian</creator><creator>Wu, Mingbo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240501</creationdate><title>In Situ Structure Modulation of Cathode‐Electrolyte Interphase for High‐Performance Potassium‐Ion Battery</title><author>Li, Fengchun ; Gu, Xin ; Cui, Akang ; Li, Yang ; Dong, Sijin ; Wu, Shuang ; Cheng, Zhenjie ; Yao, Qian ; Yang, Jian ; Wu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-b5823792f2a6294d6e7a734595e16212274acf8d42889382762a02b268586e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>cathode‐electrolyte interphase</topic><topic>Cathodic dissolution</topic><topic>Dissolution</topic><topic>Electrochemical analysis</topic><topic>electrolyte additive</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>lithium difluoro(oxalate) borate</topic><topic>Manganese</topic><topic>manganese‐based layered oxide cathode</topic><topic>Potassium</topic><topic>potassium‐ion battery</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>Structural stability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fengchun</creatorcontrib><creatorcontrib>Gu, Xin</creatorcontrib><creatorcontrib>Cui, Akang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Dong, Sijin</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><creatorcontrib>Cheng, Zhenjie</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fengchun</au><au>Gu, Xin</au><au>Cui, Akang</au><au>Li, Yang</au><au>Dong, Sijin</au><au>Wu, Shuang</au><au>Cheng, Zhenjie</au><au>Yao, Qian</au><au>Yang, Jian</au><au>Wu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Structure Modulation of Cathode‐Electrolyte Interphase for High‐Performance Potassium‐Ion Battery</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Manganese‐based layered oxide cathodes, particularly KxMnO2 (KMO), have shown great potential in potassium‐ion batteries (PIBs) due to their low cost, high theoretical capacities, and excellent thermal stability. However, Jahn‐Teller distortion, manganese dissolution, and interface instability of electrode/electrolyte lead to structural instability and performance decay. Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the electrochemical performance of P3‐type KMO. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the cathode surface, enhancing reaction kinetics, preventing manganese dissolution, and stabilizing the structure. The P3‐KMO cathode with LiDFOB in the basic electrolyte exhibits significantly improved electrochemical performance, such as a remarkable Coulombic efficiency of ≈99.5% and high capacity retention of 78.6% after 300 cycles at 100 mA g−1. Moreover, the full cell of P3‐KMO||soft carbon demonstrates satisfactory specific capacity and energy density. This study emphasizes the importance of interface chemistry for PIBs.
Here, lithium difluoro(oxalate) borate (LiDFOB) is introduced as an electrolyte additive to improve the performance of K‐ion batteries. LiDFOB creates a uniform, thin, and robust cathode‐electrolyte interphase layer on the K0.5MnO2 cathode surface, which enhances the reaction kinetics, prevents manganese dissolution, and stabilizes the structure. In K||K0.5MnO2, the capacity retention is 78.6% at 100 mA g−1 after 300 cycles in the presence of LiDFOB.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202313146</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-05, Vol.34 (19), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3051824096 |
source | Access via Wiley Online Library |
subjects | Cathodes cathode‐electrolyte interphase Cathodic dissolution Dissolution Electrochemical analysis electrolyte additive Interface stability Lithium lithium difluoro(oxalate) borate Manganese manganese‐based layered oxide cathode Potassium potassium‐ion battery Reaction kinetics Rechargeable batteries Structural stability Thermal stability |
title | In Situ Structure Modulation of Cathode‐Electrolyte Interphase for High‐Performance Potassium‐Ion Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Structure%20Modulation%20of%20Cathode%E2%80%90Electrolyte%20Interphase%20for%20High%E2%80%90Performance%20Potassium%E2%80%90Ion%20Battery&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Fengchun&rft.date=2024-05-01&rft.volume=34&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202313146&rft_dat=%3Cproquest_cross%3E3051824096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051824096&rft_id=info:pmid/&rfr_iscdi=true |