Malignant tumor identification with custom activated deep CNN architecture: TumorNet

Brain Cancer is the most dangerous type of cancer, which affects hundreds of thousands of people worldwide every year. Early identification of brain tumor is essential for timely treatment, which is crucial for the patient’s survival. Researchers have found it challenging to develop Computer-Aided D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Balakrishnan, Ajay, Preethaa, K. R. Sri, Yuvaraj, N., Kathiresan, K., Karthikeyan, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2853
creator Balakrishnan, Ajay
Preethaa, K. R. Sri
Yuvaraj, N.
Kathiresan, K.
Karthikeyan, B.
description Brain Cancer is the most dangerous type of cancer, which affects hundreds of thousands of people worldwide every year. Early identification of brain tumor is essential for timely treatment, which is crucial for the patient’s survival. Researchers have found it challenging to develop Computer-Aided Diagnosis (CAD) for Brain Tumor Identification. Many studies have discussed the feasibility of Deep Convolutional Neural Network algorithms like ResNet, Inception, VGG in Brain Tumor Classification and Detection. These Deep Learning algorithms seem to have struggled from vanishing gradient, model bias with overfitting due to smaller medical datasets available. The proposed model TumorNet adopts a custom activated Deep CNN Architecture for classifying the more dangerous malignant tumors from benevolent tumors. The proposed model is trained from scratch and able to train with a smaller dataset consisting of MRI scans. It is evaluated, and it gives an impressive accuracy of 98.24%, outperforming other state-of-the-art CNN models, ResNet-101 and EfficientNet-B0. In comparison, the F1 scores of the proposed model are estimated at 98.05%, significantly higher than the other two models, which are 82.46 and 88.33%, respectively.
doi_str_mv 10.1063/5.0203771
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3051674798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051674798</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-517c5bb80956c96e16fa101725a5eb663c11f134b9798fe39144f70597a8ed3d3</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EEqUw8A8ssSGl-I1jO2ZDFQWkUpYisVmO41BXzQfOGxD_npR2uuXuOd0Rcg1sBkzyOzFjKeNKwQmZgBCQKAnylEwY01mSZvzjnFz0_ZaxVCuVT8j61e7CZ2MbpDjUbaSh9A2GKjiLoW3oT8ANdUOPbU2tw_Bt0Ze09L6j89WK2ug2Ab3DIfp7ut4TVh4vyVlld72_OuqUvC8e1_PnZPn29DJ_WCYdcI6JAOVEUeRMC-m09CArCwxUKqzwhZTcAVTAs0IrnVeea8iySjGhlc19yUs-JTcHbhfbr8H3aLbtEJux0nAmQKpsDI6u24OrdwH_V5kuhtrGXwPM7F8zwhxf438e5V5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3051674798</pqid></control><display><type>conference_proceeding</type><title>Malignant tumor identification with custom activated deep CNN architecture: TumorNet</title><source>AIP Journals Complete</source><creator>Balakrishnan, Ajay ; Preethaa, K. R. Sri ; Yuvaraj, N. ; Kathiresan, K. ; Karthikeyan, B.</creator><contributor>Ramesh, B. ; Sathish, T. ; Saravanan, R.</contributor><creatorcontrib>Balakrishnan, Ajay ; Preethaa, K. R. Sri ; Yuvaraj, N. ; Kathiresan, K. ; Karthikeyan, B. ; Ramesh, B. ; Sathish, T. ; Saravanan, R.</creatorcontrib><description>Brain Cancer is the most dangerous type of cancer, which affects hundreds of thousands of people worldwide every year. Early identification of brain tumor is essential for timely treatment, which is crucial for the patient’s survival. Researchers have found it challenging to develop Computer-Aided Diagnosis (CAD) for Brain Tumor Identification. Many studies have discussed the feasibility of Deep Convolutional Neural Network algorithms like ResNet, Inception, VGG in Brain Tumor Classification and Detection. These Deep Learning algorithms seem to have struggled from vanishing gradient, model bias with overfitting due to smaller medical datasets available. The proposed model TumorNet adopts a custom activated Deep CNN Architecture for classifying the more dangerous malignant tumors from benevolent tumors. The proposed model is trained from scratch and able to train with a smaller dataset consisting of MRI scans. It is evaluated, and it gives an impressive accuracy of 98.24%, outperforming other state-of-the-art CNN models, ResNet-101 and EfficientNet-B0. In comparison, the F1 scores of the proposed model are estimated at 98.05%, significantly higher than the other two models, which are 82.46 and 88.33%, respectively.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0203771</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Brain ; Brain cancer ; Cancer ; Classification ; Datasets ; Feasibility studies ; Machine learning ; Tumors</subject><ispartof>AIP conference proceedings, 2024, Vol.2853 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0203771$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Ramesh, B.</contributor><contributor>Sathish, T.</contributor><contributor>Saravanan, R.</contributor><creatorcontrib>Balakrishnan, Ajay</creatorcontrib><creatorcontrib>Preethaa, K. R. Sri</creatorcontrib><creatorcontrib>Yuvaraj, N.</creatorcontrib><creatorcontrib>Kathiresan, K.</creatorcontrib><creatorcontrib>Karthikeyan, B.</creatorcontrib><title>Malignant tumor identification with custom activated deep CNN architecture: TumorNet</title><title>AIP conference proceedings</title><description>Brain Cancer is the most dangerous type of cancer, which affects hundreds of thousands of people worldwide every year. Early identification of brain tumor is essential for timely treatment, which is crucial for the patient’s survival. Researchers have found it challenging to develop Computer-Aided Diagnosis (CAD) for Brain Tumor Identification. Many studies have discussed the feasibility of Deep Convolutional Neural Network algorithms like ResNet, Inception, VGG in Brain Tumor Classification and Detection. These Deep Learning algorithms seem to have struggled from vanishing gradient, model bias with overfitting due to smaller medical datasets available. The proposed model TumorNet adopts a custom activated Deep CNN Architecture for classifying the more dangerous malignant tumors from benevolent tumors. The proposed model is trained from scratch and able to train with a smaller dataset consisting of MRI scans. It is evaluated, and it gives an impressive accuracy of 98.24%, outperforming other state-of-the-art CNN models, ResNet-101 and EfficientNet-B0. In comparison, the F1 scores of the proposed model are estimated at 98.05%, significantly higher than the other two models, which are 82.46 and 88.33%, respectively.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Classification</subject><subject>Datasets</subject><subject>Feasibility studies</subject><subject>Machine learning</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1PwzAYhC0EEqUw8A8ssSGl-I1jO2ZDFQWkUpYisVmO41BXzQfOGxD_npR2uuXuOd0Rcg1sBkzyOzFjKeNKwQmZgBCQKAnylEwY01mSZvzjnFz0_ZaxVCuVT8j61e7CZ2MbpDjUbaSh9A2GKjiLoW3oT8ANdUOPbU2tw_Bt0Ze09L6j89WK2ug2Ab3DIfp7ut4TVh4vyVlld72_OuqUvC8e1_PnZPn29DJ_WCYdcI6JAOVEUeRMC-m09CArCwxUKqzwhZTcAVTAs0IrnVeea8iySjGhlc19yUs-JTcHbhfbr8H3aLbtEJux0nAmQKpsDI6u24OrdwH_V5kuhtrGXwPM7F8zwhxf438e5V5U</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>Balakrishnan, Ajay</creator><creator>Preethaa, K. R. Sri</creator><creator>Yuvaraj, N.</creator><creator>Kathiresan, K.</creator><creator>Karthikeyan, B.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240507</creationdate><title>Malignant tumor identification with custom activated deep CNN architecture: TumorNet</title><author>Balakrishnan, Ajay ; Preethaa, K. R. Sri ; Yuvaraj, N. ; Kathiresan, K. ; Karthikeyan, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-517c5bb80956c96e16fa101725a5eb663c11f134b9798fe39144f70597a8ed3d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Classification</topic><topic>Datasets</topic><topic>Feasibility studies</topic><topic>Machine learning</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Ajay</creatorcontrib><creatorcontrib>Preethaa, K. R. Sri</creatorcontrib><creatorcontrib>Yuvaraj, N.</creatorcontrib><creatorcontrib>Kathiresan, K.</creatorcontrib><creatorcontrib>Karthikeyan, B.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Ajay</au><au>Preethaa, K. R. Sri</au><au>Yuvaraj, N.</au><au>Kathiresan, K.</au><au>Karthikeyan, B.</au><au>Ramesh, B.</au><au>Sathish, T.</au><au>Saravanan, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Malignant tumor identification with custom activated deep CNN architecture: TumorNet</atitle><btitle>AIP conference proceedings</btitle><date>2024-05-07</date><risdate>2024</risdate><volume>2853</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Brain Cancer is the most dangerous type of cancer, which affects hundreds of thousands of people worldwide every year. Early identification of brain tumor is essential for timely treatment, which is crucial for the patient’s survival. Researchers have found it challenging to develop Computer-Aided Diagnosis (CAD) for Brain Tumor Identification. Many studies have discussed the feasibility of Deep Convolutional Neural Network algorithms like ResNet, Inception, VGG in Brain Tumor Classification and Detection. These Deep Learning algorithms seem to have struggled from vanishing gradient, model bias with overfitting due to smaller medical datasets available. The proposed model TumorNet adopts a custom activated Deep CNN Architecture for classifying the more dangerous malignant tumors from benevolent tumors. The proposed model is trained from scratch and able to train with a smaller dataset consisting of MRI scans. It is evaluated, and it gives an impressive accuracy of 98.24%, outperforming other state-of-the-art CNN models, ResNet-101 and EfficientNet-B0. In comparison, the F1 scores of the proposed model are estimated at 98.05%, significantly higher than the other two models, which are 82.46 and 88.33%, respectively.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203771</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2853 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3051674798
source AIP Journals Complete
subjects Algorithms
Artificial neural networks
Brain
Brain cancer
Cancer
Classification
Datasets
Feasibility studies
Machine learning
Tumors
title Malignant tumor identification with custom activated deep CNN architecture: TumorNet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Malignant%20tumor%20identification%20with%20custom%20activated%20deep%20CNN%20architecture:%20TumorNet&rft.btitle=AIP%20conference%20proceedings&rft.au=Balakrishnan,%20Ajay&rft.date=2024-05-07&rft.volume=2853&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0203771&rft_dat=%3Cproquest_scita%3E3051674798%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051674798&rft_id=info:pmid/&rfr_iscdi=true