Binary grasshopper optimization based feature selection for mobile malware detection using random forest

The most widely used and dominant operating system for smartphones is Android. Over a million Android mobile applications are available in the Google Play store, which users download and use for various purposes. In the meantime, they have become a prominent target for immoral incursions as a result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hussein, Alia A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3097
creator Hussein, Alia A.
description The most widely used and dominant operating system for smartphones is Android. Over a million Android mobile applications are available in the Google Play store, which users download and use for various purposes. In the meantime, they have become a prominent target for immoral incursions as a result of their open-source platform and popularity. Due to their inability to recognize and predict malware with varying features, conventional techniques in this investigation failed to detect sophisticated malware. In recent years, machine learning classification methods have been used to tackle these problems, and this study discovers that ensemble learning yields the best outcomes. Consequently, this study suggested an Ensemble learning classification model trained on the (Malgenome, CIC-MalDroid2020, and Drebin) mobile malware dataset using Random Forest with Binary Grasshopper Optimization Algorithm. The model’s performance is assessed. We achieved a maximum accuracy of 97% for the Drebin dataset, the highest accuracy of 98.70% for the Malgenom dataset, and the highest accuracy of 97.70% for the CIC-MalDroid2020 dataset.
doi_str_mv 10.1063/5.0213296
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3051672594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051672594</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1686-f74453d0fe2e6ae2665d1e56f5af6f0f2868877f7787fca4a5599f474bd834293</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTA170yWWqwKBTcK7kLauWlTZiZjMoPor3f6WF245-Oeew5Ct5TMKFH8Qc4Io5wZdYYmVEpaaEXVOZoQYkTBBP-6RFc57whhRutygrZPoXXpF2-Sy3kbuw4Sjl0fmvDn-hBbvHIZKuzB9UMCnKGG9WHvY8JNXIUacOPqHzeKFfQnccih3eDk2io2exJyf40uvKsz3JzmFH0unj_mr8Xy_eVt_rgsOqpKVXgthOQV8cBAOWBKyYqCVF46rzzxrFRlqbUfn9d-7YST0hgvtFhVJRfM8Cm6O97tUvweRmO7i0NqR0vLiaRKM2nESN0fqbwO_SGo7VJoxiYsJXbfpJX21CT_By8hZwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3051672594</pqid></control><display><type>conference_proceeding</type><title>Binary grasshopper optimization based feature selection for mobile malware detection using random forest</title><source>AIP Journals Complete</source><creator>Hussein, Alia A.</creator><contributor>EIdi, Jaafer Hmood ; Obaid, Ahmed J. ; Mohamed, Mohamed I.</contributor><creatorcontrib>Hussein, Alia A. ; EIdi, Jaafer Hmood ; Obaid, Ahmed J. ; Mohamed, Mohamed I.</creatorcontrib><description>The most widely used and dominant operating system for smartphones is Android. Over a million Android mobile applications are available in the Google Play store, which users download and use for various purposes. In the meantime, they have become a prominent target for immoral incursions as a result of their open-source platform and popularity. Due to their inability to recognize and predict malware with varying features, conventional techniques in this investigation failed to detect sophisticated malware. In recent years, machine learning classification methods have been used to tackle these problems, and this study discovers that ensemble learning yields the best outcomes. Consequently, this study suggested an Ensemble learning classification model trained on the (Malgenome, CIC-MalDroid2020, and Drebin) mobile malware dataset using Random Forest with Binary Grasshopper Optimization Algorithm. The model’s performance is assessed. We achieved a maximum accuracy of 97% for the Drebin dataset, the highest accuracy of 98.70% for the Malgenom dataset, and the highest accuracy of 97.70% for the CIC-MalDroid2020 dataset.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0213296</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Algorithms ; Applications programs ; Classification ; Datasets ; Ensemble learning ; Grasshoppers ; Machine learning ; Malware ; Mobile computing ; Optimization ; Smartphones</subject><ispartof>AIP conference proceedings, 2024, Vol.3097 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0213296$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>EIdi, Jaafer Hmood</contributor><contributor>Obaid, Ahmed J.</contributor><contributor>Mohamed, Mohamed I.</contributor><creatorcontrib>Hussein, Alia A.</creatorcontrib><title>Binary grasshopper optimization based feature selection for mobile malware detection using random forest</title><title>AIP conference proceedings</title><description>The most widely used and dominant operating system for smartphones is Android. Over a million Android mobile applications are available in the Google Play store, which users download and use for various purposes. In the meantime, they have become a prominent target for immoral incursions as a result of their open-source platform and popularity. Due to their inability to recognize and predict malware with varying features, conventional techniques in this investigation failed to detect sophisticated malware. In recent years, machine learning classification methods have been used to tackle these problems, and this study discovers that ensemble learning yields the best outcomes. Consequently, this study suggested an Ensemble learning classification model trained on the (Malgenome, CIC-MalDroid2020, and Drebin) mobile malware dataset using Random Forest with Binary Grasshopper Optimization Algorithm. The model’s performance is assessed. We achieved a maximum accuracy of 97% for the Drebin dataset, the highest accuracy of 98.70% for the Malgenom dataset, and the highest accuracy of 97.70% for the CIC-MalDroid2020 dataset.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applications programs</subject><subject>Classification</subject><subject>Datasets</subject><subject>Ensemble learning</subject><subject>Grasshoppers</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Mobile computing</subject><subject>Optimization</subject><subject>Smartphones</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTA170yWWqwKBTcK7kLauWlTZiZjMoPor3f6WF245-Oeew5Ct5TMKFH8Qc4Io5wZdYYmVEpaaEXVOZoQYkTBBP-6RFc57whhRutygrZPoXXpF2-Sy3kbuw4Sjl0fmvDn-hBbvHIZKuzB9UMCnKGG9WHvY8JNXIUacOPqHzeKFfQnccih3eDk2io2exJyf40uvKsz3JzmFH0unj_mr8Xy_eVt_rgsOqpKVXgthOQV8cBAOWBKyYqCVF46rzzxrFRlqbUfn9d-7YST0hgvtFhVJRfM8Cm6O97tUvweRmO7i0NqR0vLiaRKM2nESN0fqbwO_SGo7VJoxiYsJXbfpJX21CT_By8hZwE</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>Hussein, Alia A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240507</creationdate><title>Binary grasshopper optimization based feature selection for mobile malware detection using random forest</title><author>Hussein, Alia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1686-f74453d0fe2e6ae2665d1e56f5af6f0f2868877f7787fca4a5599f474bd834293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applications programs</topic><topic>Classification</topic><topic>Datasets</topic><topic>Ensemble learning</topic><topic>Grasshoppers</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Mobile computing</topic><topic>Optimization</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussein, Alia A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussein, Alia A.</au><au>EIdi, Jaafer Hmood</au><au>Obaid, Ahmed J.</au><au>Mohamed, Mohamed I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Binary grasshopper optimization based feature selection for mobile malware detection using random forest</atitle><btitle>AIP conference proceedings</btitle><date>2024-05-07</date><risdate>2024</risdate><volume>3097</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The most widely used and dominant operating system for smartphones is Android. Over a million Android mobile applications are available in the Google Play store, which users download and use for various purposes. In the meantime, they have become a prominent target for immoral incursions as a result of their open-source platform and popularity. Due to their inability to recognize and predict malware with varying features, conventional techniques in this investigation failed to detect sophisticated malware. In recent years, machine learning classification methods have been used to tackle these problems, and this study discovers that ensemble learning yields the best outcomes. Consequently, this study suggested an Ensemble learning classification model trained on the (Malgenome, CIC-MalDroid2020, and Drebin) mobile malware dataset using Random Forest with Binary Grasshopper Optimization Algorithm. The model’s performance is assessed. We achieved a maximum accuracy of 97% for the Drebin dataset, the highest accuracy of 98.70% for the Malgenom dataset, and the highest accuracy of 97.70% for the CIC-MalDroid2020 dataset.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0213296</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3097 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3051672594
source AIP Journals Complete
subjects Accuracy
Algorithms
Applications programs
Classification
Datasets
Ensemble learning
Grasshoppers
Machine learning
Malware
Mobile computing
Optimization
Smartphones
title Binary grasshopper optimization based feature selection for mobile malware detection using random forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Binary%20grasshopper%20optimization%20based%20feature%20selection%20for%20mobile%20malware%20detection%20using%20random%20forest&rft.btitle=AIP%20conference%20proceedings&rft.au=Hussein,%20Alia%20A.&rft.date=2024-05-07&rft.volume=3097&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0213296&rft_dat=%3Cproquest_scita%3E3051672594%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051672594&rft_id=info:pmid/&rfr_iscdi=true