Enhancing Autonomous Navigation: A Visual SLAM Approach
An autonomous vehicle can simultaneously map its environment and identify its own position by employing a technique called “Simultaneous Localisation And Mapping” (SLAM). Autonomous mobility requires identifying the locations of adjacent landmarks and objects, as well as the vehicle’s position, usin...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-04, Vol.2748 (1), p.12008 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12008 |
container_title | Journal of physics. Conference series |
container_volume | 2748 |
creator | Paul, Sayandip Hemanth Kumar, C Arunkumar Bongale, C |
description | An autonomous vehicle can simultaneously map its environment and identify its own position by employing a technique called “Simultaneous Localisation And Mapping” (SLAM). Autonomous mobility requires identifying the locations of adjacent landmarks and objects, as well as the vehicle’s position, using an appropriate technique. Monocular SLAM systems often face challenges related to depth perception and scale ambiguity, leading to trajectory drift over time. In contrast, Stereo SLAM systems utilize dual cameras to overcome these limitations. The purpose of this work is to assess how well visual SLAM systems perform by contrasting trajectory estimates with ground truth information obtained from simulations. The findings indicate that stereo visual SLAM algorithms offer more accurate camera trajectory estimations than monocular SLAM, making them a preferable choice for applications demanding precise camera localization and mapping in autonomous vehicles. |
doi_str_mv | 10.1088/1742-6596/2748/1/012008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3051546778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051546778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2398-dc900bd9e58708ed7e01bc82076530456b61ed1d516766156b143ee3d71e620e3</originalsourceid><addsrcrecordid>eNqFUE1Pg0AQ3RhNrNXfIIlnZIZlP_BGmlpNUA9-XDcLbFualkUWTPz3LsHUo3OZeZl572UeIdcItwhSRiiSOOQs5VEsEg8jwBhAnpDZcXN6nKU8JxfO7QCoLzEjYtlsdVPWzSbIht429mAHFzzrr3qj-9o2d0EWfNRu0PvgNc-egqxtO6vL7SU5W-u9M1e_fU7e75dvi4cwf1k9LrI8LGOayrAqU4CiSg2TAqSphAEsShmD4IxCwnjB0VRYMeSCc_QYE2oMrQQaHoOhc3Iz6Xrbz8G4Xu3s0DXeUlFgyBIuhPRXYroqO-tcZ9aq7eqD7r4VghpTUuP_asxCjSkpVFNKnkknZm3bP-n_WD_Z5GaK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051546778</pqid></control><display><type>article</type><title>Enhancing Autonomous Navigation: A Visual SLAM Approach</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Paul, Sayandip ; Hemanth Kumar, C ; Arunkumar Bongale, C</creator><creatorcontrib>Paul, Sayandip ; Hemanth Kumar, C ; Arunkumar Bongale, C</creatorcontrib><description>An autonomous vehicle can simultaneously map its environment and identify its own position by employing a technique called “Simultaneous Localisation And Mapping” (SLAM). Autonomous mobility requires identifying the locations of adjacent landmarks and objects, as well as the vehicle’s position, using an appropriate technique. Monocular SLAM systems often face challenges related to depth perception and scale ambiguity, leading to trajectory drift over time. In contrast, Stereo SLAM systems utilize dual cameras to overcome these limitations. The purpose of this work is to assess how well visual SLAM systems perform by contrasting trajectory estimates with ground truth information obtained from simulations. The findings indicate that stereo visual SLAM algorithms offer more accurate camera trajectory estimations than monocular SLAM, making them a preferable choice for applications demanding precise camera localization and mapping in autonomous vehicles.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2748/1/012008</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Autonomous navigation ; Cameras ; Ego vehicle ; Loop Closure ; Monocular SLAM ; Simultaneous localization and mapping ; Space perception ; Stereo SLAM ; Trajectory analysis ; Visual SLAM</subject><ispartof>Journal of physics. Conference series, 2024-04, Vol.2748 (1), p.12008</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2398-dc900bd9e58708ed7e01bc82076530456b61ed1d516766156b143ee3d71e620e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2748/1/012008/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Paul, Sayandip</creatorcontrib><creatorcontrib>Hemanth Kumar, C</creatorcontrib><creatorcontrib>Arunkumar Bongale, C</creatorcontrib><title>Enhancing Autonomous Navigation: A Visual SLAM Approach</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>An autonomous vehicle can simultaneously map its environment and identify its own position by employing a technique called “Simultaneous Localisation And Mapping” (SLAM). Autonomous mobility requires identifying the locations of adjacent landmarks and objects, as well as the vehicle’s position, using an appropriate technique. Monocular SLAM systems often face challenges related to depth perception and scale ambiguity, leading to trajectory drift over time. In contrast, Stereo SLAM systems utilize dual cameras to overcome these limitations. The purpose of this work is to assess how well visual SLAM systems perform by contrasting trajectory estimates with ground truth information obtained from simulations. The findings indicate that stereo visual SLAM algorithms offer more accurate camera trajectory estimations than monocular SLAM, making them a preferable choice for applications demanding precise camera localization and mapping in autonomous vehicles.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Cameras</subject><subject>Ego vehicle</subject><subject>Loop Closure</subject><subject>Monocular SLAM</subject><subject>Simultaneous localization and mapping</subject><subject>Space perception</subject><subject>Stereo SLAM</subject><subject>Trajectory analysis</subject><subject>Visual SLAM</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFUE1Pg0AQ3RhNrNXfIIlnZIZlP_BGmlpNUA9-XDcLbFualkUWTPz3LsHUo3OZeZl572UeIdcItwhSRiiSOOQs5VEsEg8jwBhAnpDZcXN6nKU8JxfO7QCoLzEjYtlsdVPWzSbIht429mAHFzzrr3qj-9o2d0EWfNRu0PvgNc-egqxtO6vL7SU5W-u9M1e_fU7e75dvi4cwf1k9LrI8LGOayrAqU4CiSg2TAqSphAEsShmD4IxCwnjB0VRYMeSCc_QYE2oMrQQaHoOhc3Iz6Xrbz8G4Xu3s0DXeUlFgyBIuhPRXYroqO-tcZ9aq7eqD7r4VghpTUuP_asxCjSkpVFNKnkknZm3bP-n_WD_Z5GaK</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Paul, Sayandip</creator><creator>Hemanth Kumar, C</creator><creator>Arunkumar Bongale, C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240401</creationdate><title>Enhancing Autonomous Navigation: A Visual SLAM Approach</title><author>Paul, Sayandip ; Hemanth Kumar, C ; Arunkumar Bongale, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2398-dc900bd9e58708ed7e01bc82076530456b61ed1d516766156b143ee3d71e620e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Cameras</topic><topic>Ego vehicle</topic><topic>Loop Closure</topic><topic>Monocular SLAM</topic><topic>Simultaneous localization and mapping</topic><topic>Space perception</topic><topic>Stereo SLAM</topic><topic>Trajectory analysis</topic><topic>Visual SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Sayandip</creatorcontrib><creatorcontrib>Hemanth Kumar, C</creatorcontrib><creatorcontrib>Arunkumar Bongale, C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Sayandip</au><au>Hemanth Kumar, C</au><au>Arunkumar Bongale, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Autonomous Navigation: A Visual SLAM Approach</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>2748</volume><issue>1</issue><spage>12008</spage><pages>12008-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>An autonomous vehicle can simultaneously map its environment and identify its own position by employing a technique called “Simultaneous Localisation And Mapping” (SLAM). Autonomous mobility requires identifying the locations of adjacent landmarks and objects, as well as the vehicle’s position, using an appropriate technique. Monocular SLAM systems often face challenges related to depth perception and scale ambiguity, leading to trajectory drift over time. In contrast, Stereo SLAM systems utilize dual cameras to overcome these limitations. The purpose of this work is to assess how well visual SLAM systems perform by contrasting trajectory estimates with ground truth information obtained from simulations. The findings indicate that stereo visual SLAM algorithms offer more accurate camera trajectory estimations than monocular SLAM, making them a preferable choice for applications demanding precise camera localization and mapping in autonomous vehicles.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2748/1/012008</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-04, Vol.2748 (1), p.12008 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_3051546778 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Autonomous navigation Cameras Ego vehicle Loop Closure Monocular SLAM Simultaneous localization and mapping Space perception Stereo SLAM Trajectory analysis Visual SLAM |
title | Enhancing Autonomous Navigation: A Visual SLAM Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Autonomous%20Navigation:%20A%20Visual%20SLAM%20Approach&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Paul,%20Sayandip&rft.date=2024-04-01&rft.volume=2748&rft.issue=1&rft.spage=12008&rft.pages=12008-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2748/1/012008&rft_dat=%3Cproquest_iop_j%3E3051546778%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051546778&rft_id=info:pmid/&rfr_iscdi=true |