M\({^2}\)Depth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation

This paper presents a novel self-supervised two-frame multi-camera metric depth estimation network, termed M\({^2}\)Depth, which is designed to predict reliable scale-aware surrounding depth in autonomous driving. Unlike the previous works that use multi-view images from a single time-step or multip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Zou, Yingshuang, Ding, Yikang, Qiu, Xi, Wang, Haoqian, Zhang, Haotian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zou, Yingshuang
Ding, Yikang
Qiu, Xi
Wang, Haoqian
Zhang, Haotian
description This paper presents a novel self-supervised two-frame multi-camera metric depth estimation network, termed M\({^2}\)Depth, which is designed to predict reliable scale-aware surrounding depth in autonomous driving. Unlike the previous works that use multi-view images from a single time-step or multiple time-step images from a single camera, M\({^2}\)Depth takes temporally adjacent two-frame images from multiple cameras as inputs and produces high-quality surrounding depth. We first construct cost volumes in spatial and temporal domains individually and propose a spatial-temporal fusion module that integrates the spatial-temporal information to yield a strong volume presentation. We additionally combine the neural prior from SAM features with internal features to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M\({^2}\)Depth achieves state-of-the-art performance. More results can be found in https://heiheishuang.xyz/M2Depth .
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3051514393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051514393</sourcerecordid><originalsourceid>FETCH-proquest_journals_30515143933</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw843RqI4zqo3RdEktKMmwUghOzUnTLS4tSC0qyyxOTVEIKc_XdStKzE1V8C3NKcnUTQYyixIVfFNLijKTFcCaFFyLSzJzE0sy8_N4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2MDU0NTQxNjS2Jg4VQBNoz1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051514393</pqid></control><display><type>article</type><title>M\({^2}\)Depth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation</title><source>Freely Accessible Journals</source><creator>Zou, Yingshuang ; Ding, Yikang ; Qiu, Xi ; Wang, Haoqian ; Zhang, Haotian</creator><creatorcontrib>Zou, Yingshuang ; Ding, Yikang ; Qiu, Xi ; Wang, Haoqian ; Zhang, Haotian</creatorcontrib><description>This paper presents a novel self-supervised two-frame multi-camera metric depth estimation network, termed M\({^2}\)Depth, which is designed to predict reliable scale-aware surrounding depth in autonomous driving. Unlike the previous works that use multi-view images from a single time-step or multiple time-step images from a single camera, M\({^2}\)Depth takes temporally adjacent two-frame images from multiple cameras as inputs and produces high-quality surrounding depth. We first construct cost volumes in spatial and temporal domains individually and propose a spatial-temporal fusion module that integrates the spatial-temporal information to yield a strong volume presentation. We additionally combine the neural prior from SAM features with internal features to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M\({^2}\)Depth achieves state-of-the-art performance. More results can be found in https://heiheishuang.xyz/M2Depth .</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zou, Yingshuang</creatorcontrib><creatorcontrib>Ding, Yikang</creatorcontrib><creatorcontrib>Qiu, Xi</creatorcontrib><creatorcontrib>Wang, Haoqian</creatorcontrib><creatorcontrib>Zhang, Haotian</creatorcontrib><title>M\({^2}\)Depth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation</title><title>arXiv.org</title><description>This paper presents a novel self-supervised two-frame multi-camera metric depth estimation network, termed M\({^2}\)Depth, which is designed to predict reliable scale-aware surrounding depth in autonomous driving. Unlike the previous works that use multi-view images from a single time-step or multiple time-step images from a single camera, M\({^2}\)Depth takes temporally adjacent two-frame images from multiple cameras as inputs and produces high-quality surrounding depth. We first construct cost volumes in spatial and temporal domains individually and propose a spatial-temporal fusion module that integrates the spatial-temporal information to yield a strong volume presentation. We additionally combine the neural prior from SAM features with internal features to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M\({^2}\)Depth achieves state-of-the-art performance. More results can be found in https://heiheishuang.xyz/M2Depth .</description><subject>Cameras</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw843RqI4zqo3RdEktKMmwUghOzUnTLS4tSC0qyyxOTVEIKc_XdStKzE1V8C3NKcnUTQYyixIVfFNLijKTFcCaFFyLSzJzE0sy8_N4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2MDU0NTQxNjS2Jg4VQBNoz1O</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Zou, Yingshuang</creator><creator>Ding, Yikang</creator><creator>Qiu, Xi</creator><creator>Wang, Haoqian</creator><creator>Zhang, Haotian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240503</creationdate><title>M\({^2}\)Depth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation</title><author>Zou, Yingshuang ; Ding, Yikang ; Qiu, Xi ; Wang, Haoqian ; Zhang, Haotian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30515143933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yingshuang</creatorcontrib><creatorcontrib>Ding, Yikang</creatorcontrib><creatorcontrib>Qiu, Xi</creatorcontrib><creatorcontrib>Wang, Haoqian</creatorcontrib><creatorcontrib>Zhang, Haotian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yingshuang</au><au>Ding, Yikang</au><au>Qiu, Xi</au><au>Wang, Haoqian</au><au>Zhang, Haotian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>M\({^2}\)Depth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation</atitle><jtitle>arXiv.org</jtitle><date>2024-05-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents a novel self-supervised two-frame multi-camera metric depth estimation network, termed M\({^2}\)Depth, which is designed to predict reliable scale-aware surrounding depth in autonomous driving. Unlike the previous works that use multi-view images from a single time-step or multiple time-step images from a single camera, M\({^2}\)Depth takes temporally adjacent two-frame images from multiple cameras as inputs and produces high-quality surrounding depth. We first construct cost volumes in spatial and temporal domains individually and propose a spatial-temporal fusion module that integrates the spatial-temporal information to yield a strong volume presentation. We additionally combine the neural prior from SAM features with internal features to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M\({^2}\)Depth achieves state-of-the-art performance. More results can be found in https://heiheishuang.xyz/M2Depth .</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3051514393
source Freely Accessible Journals
subjects Cameras
title M\({^2}\)Depth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=M%5C(%7B%5E2%7D%5C)Depth:%20Self-supervised%20Two-Frame%20Multi-camera%20Metric%20Depth%20Estimation&rft.jtitle=arXiv.org&rft.au=Zou,%20Yingshuang&rft.date=2024-05-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3051514393%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051514393&rft_id=info:pmid/&rfr_iscdi=true