GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse
Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area eff...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ai, Chenyang Zhao, Lechuan Huang, Zhijie Li, Cangyuan Wang, Xinan Wang, Ying |
description | Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3051514297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051514297</sourcerecordid><originalsourceid>FETCH-proquest_journals_30515142973</originalsourceid><addsrcrecordid>eNqNisEKwjAQBYMgWLT_sOC5kCaNVW9Vqx5Fei9L3GJLSTVJKf69OfgBnuYxb2YsElKmyTYTYsFi5zrOudjkQikZsdulKvaAYGiCCxmy2ENFxg0WCq2pD8KHPbX-CQfynoK3hFA2TatbMvoDaB5wQo9wp9HRis0b7B3FPy7Z-lxWx2vyssN7JOfrbhitCVctuUpVmoldLv-rvm6rPT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051514297</pqid></control><display><type>article</type><title>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</title><source>Free E- Journals</source><creator>Ai, Chenyang ; Zhao, Lechuan ; Huang, Zhijie ; Li, Cangyuan ; Wang, Xinan ; Wang, Ying</creator><creatorcontrib>Ai, Chenyang ; Zhao, Lechuan ; Huang, Zhijie ; Li, Cangyuan ; Wang, Xinan ; Wang, Ying</creatorcontrib><description>Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis ; Matrix algebra ; Multiplication ; Operators (mathematics) ; Tensors</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ai, Chenyang</creatorcontrib><creatorcontrib>Zhao, Lechuan</creatorcontrib><creatorcontrib>Huang, Zhijie</creatorcontrib><creatorcontrib>Li, Cangyuan</creatorcontrib><creatorcontrib>Wang, Xinan</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><title>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</title><title>arXiv.org</title><description>Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA.</description><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Multiplication</subject><subject>Operators (mathematics)</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKwjAQBYMgWLT_sOC5kCaNVW9Vqx5Fei9L3GJLSTVJKf69OfgBnuYxb2YsElKmyTYTYsFi5zrOudjkQikZsdulKvaAYGiCCxmy2ENFxg0WCq2pD8KHPbX-CQfynoK3hFA2TatbMvoDaB5wQo9wp9HRis0b7B3FPy7Z-lxWx2vyssN7JOfrbhitCVctuUpVmoldLv-rvm6rPT8</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Ai, Chenyang</creator><creator>Zhao, Lechuan</creator><creator>Huang, Zhijie</creator><creator>Li, Cangyuan</creator><creator>Wang, Xinan</creator><creator>Wang, Ying</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240503</creationdate><title>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</title><author>Ai, Chenyang ; Zhao, Lechuan ; Huang, Zhijie ; Li, Cangyuan ; Wang, Xinan ; Wang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30515142973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Multiplication</topic><topic>Operators (mathematics)</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ai, Chenyang</creatorcontrib><creatorcontrib>Zhao, Lechuan</creatorcontrib><creatorcontrib>Huang, Zhijie</creatorcontrib><creatorcontrib>Li, Cangyuan</creatorcontrib><creatorcontrib>Wang, Xinan</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Chenyang</au><au>Zhao, Lechuan</au><au>Huang, Zhijie</au><au>Li, Cangyuan</au><au>Wang, Xinan</au><au>Wang, Ying</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</atitle><jtitle>arXiv.org</jtitle><date>2024-05-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3051514297 |
source | Free E- Journals |
subjects | Mathematical analysis Matrix algebra Multiplication Operators (mathematics) Tensors |
title | GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GTA:%20a%20new%20General%20Tensor%20Accelerator%20with%20Better%20Area%20Efficiency%20and%20Data%20Reuse&rft.jtitle=arXiv.org&rft.au=Ai,%20Chenyang&rft.date=2024-05-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3051514297%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051514297&rft_id=info:pmid/&rfr_iscdi=true |