GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse

Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Ai, Chenyang, Zhao, Lechuan, Huang, Zhijie, Li, Cangyuan, Wang, Xinan, Wang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ai, Chenyang
Zhao, Lechuan
Huang, Zhijie
Li, Cangyuan
Wang, Xinan
Wang, Ying
description Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3051514297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051514297</sourcerecordid><originalsourceid>FETCH-proquest_journals_30515142973</originalsourceid><addsrcrecordid>eNqNisEKwjAQBYMgWLT_sOC5kCaNVW9Vqx5Fei9L3GJLSTVJKf69OfgBnuYxb2YsElKmyTYTYsFi5zrOudjkQikZsdulKvaAYGiCCxmy2ENFxg0WCq2pD8KHPbX-CQfynoK3hFA2TatbMvoDaB5wQo9wp9HRis0b7B3FPy7Z-lxWx2vyssN7JOfrbhitCVctuUpVmoldLv-rvm6rPT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051514297</pqid></control><display><type>article</type><title>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</title><source>Free E- Journals</source><creator>Ai, Chenyang ; Zhao, Lechuan ; Huang, Zhijie ; Li, Cangyuan ; Wang, Xinan ; Wang, Ying</creator><creatorcontrib>Ai, Chenyang ; Zhao, Lechuan ; Huang, Zhijie ; Li, Cangyuan ; Wang, Xinan ; Wang, Ying</creatorcontrib><description>Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis ; Matrix algebra ; Multiplication ; Operators (mathematics) ; Tensors</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ai, Chenyang</creatorcontrib><creatorcontrib>Zhao, Lechuan</creatorcontrib><creatorcontrib>Huang, Zhijie</creatorcontrib><creatorcontrib>Li, Cangyuan</creatorcontrib><creatorcontrib>Wang, Xinan</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><title>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</title><title>arXiv.org</title><description>Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA.</description><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Multiplication</subject><subject>Operators (mathematics)</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKwjAQBYMgWLT_sOC5kCaNVW9Vqx5Fei9L3GJLSTVJKf69OfgBnuYxb2YsElKmyTYTYsFi5zrOudjkQikZsdulKvaAYGiCCxmy2ENFxg0WCq2pD8KHPbX-CQfynoK3hFA2TatbMvoDaB5wQo9wp9HRis0b7B3FPy7Z-lxWx2vyssN7JOfrbhitCVctuUpVmoldLv-rvm6rPT8</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Ai, Chenyang</creator><creator>Zhao, Lechuan</creator><creator>Huang, Zhijie</creator><creator>Li, Cangyuan</creator><creator>Wang, Xinan</creator><creator>Wang, Ying</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240503</creationdate><title>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</title><author>Ai, Chenyang ; Zhao, Lechuan ; Huang, Zhijie ; Li, Cangyuan ; Wang, Xinan ; Wang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30515142973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Multiplication</topic><topic>Operators (mathematics)</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ai, Chenyang</creatorcontrib><creatorcontrib>Zhao, Lechuan</creatorcontrib><creatorcontrib>Huang, Zhijie</creatorcontrib><creatorcontrib>Li, Cangyuan</creatorcontrib><creatorcontrib>Wang, Xinan</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Chenyang</au><au>Zhao, Lechuan</au><au>Huang, Zhijie</au><au>Li, Cangyuan</au><au>Wang, Xinan</au><au>Wang, Ying</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse</atitle><jtitle>arXiv.org</jtitle><date>2024-05-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recently, tensor algebra have witnessed significant applications across various domains. Each operator in tensor algebra features different computational workload and precision. However, current general accelerators, such as VPU, GPGPU, and CGRA, support tensor operators with low energy and area efficiency. This paper conducts an in-depth exploration of general accelerator for tensor processing. First, we find the similarity between matrix multiplication and precision multiplication, and create a method classifying tensor operators. Then, we implement two discoveries and introduce the systolic architecture into general-purpose accelerator. Therefore, we propose a new General Tensor Accelerator (GTA), which has a better area efficiency and data reuse. Furthermore, we create a large hardware scheduling space consisting of dataflow, precision and array resize. Our evaluation results demonstrate that GTA is able to achieves 7.76X, 5.35X, 8.76X memory efficiency and 6.45X, 3.39X, 25.83X speedup over of VPU, GPGPU and CGRA.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3051514297
source Free E- Journals
subjects Mathematical analysis
Matrix algebra
Multiplication
Operators (mathematics)
Tensors
title GTA: a new General Tensor Accelerator with Better Area Efficiency and Data Reuse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GTA:%20a%20new%20General%20Tensor%20Accelerator%20with%20Better%20Area%20Efficiency%20and%20Data%20Reuse&rft.jtitle=arXiv.org&rft.au=Ai,%20Chenyang&rft.date=2024-05-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3051514297%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051514297&rft_id=info:pmid/&rfr_iscdi=true