Quantum circuit implementations of lightweight authenticated encryption ASCON
In this paper, we discuss the quantum circuit implementations of the lightweight authenticated encryption algorithm ASCON by using the NOT gates, CNOT gates, Toffoli gates, measurements, and the dynamic quantum circuits. Firstly, the quantum circuit of addition of constants is realized by adding the...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-05, Vol.80 (8), p.11322-11337 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11337 |
---|---|
container_issue | 8 |
container_start_page | 11322 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | Zheng, Yuanmeng Luo, Qingbin Li, Qiang Lv, Yi |
description | In this paper, we discuss the quantum circuit implementations of the lightweight authenticated encryption algorithm ASCON by using the NOT gates, CNOT gates, Toffoli gates, measurements, and the dynamic quantum circuits. Firstly, the quantum circuit of addition of constants is realized by adding the NOT gates according to the position of 1 in round constants. Secondly, the quantum circuit of S-box of the permutation is synthesized according to the classical circuit diagram of S-box. Then the linear layer functions are expressed in matrix form, and their quantum circuits are synthesized according to Gaussian elimination. Finally, we synthesize the whole quantum circuits according to the general diagrams of the authenticated encryption algorithm ASCON. The correctness of the quantum circuits of the S-box and the linear layer was verified by the Aer simulator of the IBM Quantum platform. As far as we know, this is the first implementation of the quantum circuits for the Authenticated Encryption with Associated Data (AEAD) of ASCON in-place. The maximum quantum resources for the three ASCON authenticated encryption algorithms were estimated. The quantum circuit of ASCON-128 uses a total of 320 qubits, 30,639 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits. The quantum circuit of ASCON-128a uses a total of 320 qubits, 23,558 NOT gates, 98,144 CNOT gates, 6144 Toffoli gates, 8192 measurements, and 4096 dynamic quantum circuits. The quantum circuit of ASCON-80pq uses a total of 320 qubits, 30,736 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits. |
doi_str_mv | 10.1007/s11227-023-05877-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051510994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051510994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-83f3a8c21f096a586c9d1a7e47e031fe0c34a25552aaf289f65bbc5f4b3f2b513</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rkq9k9lqJWqBZRzyGbJm1K98Mki-2_d-sK3rzMMMzzzsCD0DWBWwIg7yIhlMoMKMtA5FJm-xM0IkL2I8_5KRpBQSHLBafn6CLGLQBwJtkIPb92uk5dhY0PpvMJ-6rd2crWSSff1BE3Du_8epO-7LFi3aVNv_RGJ7vCtjbh0B5BPH2bLV8u0ZnTu2ivfvsYfTzcv8_m2WL5-DSbLjLDSJGynDmmc0OJg2KiRT4xxYpoabm0wIizYBjXVAhBtXY0L9xElKURjpfM0VIQNkY3w902NJ-djUltmy7U_UvFQBBBoCh4T9GBMqGJMVin2uArHQ6KgDpqU4M21WtTP9rUvg-xIRR7uF7b8Hf6n9Q3_ZJxkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051510994</pqid></control><display><type>article</type><title>Quantum circuit implementations of lightweight authenticated encryption ASCON</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Yuanmeng ; Luo, Qingbin ; Li, Qiang ; Lv, Yi</creator><creatorcontrib>Zheng, Yuanmeng ; Luo, Qingbin ; Li, Qiang ; Lv, Yi</creatorcontrib><description>In this paper, we discuss the quantum circuit implementations of the lightweight authenticated encryption algorithm ASCON by using the NOT gates, CNOT gates, Toffoli gates, measurements, and the dynamic quantum circuits. Firstly, the quantum circuit of addition of constants is realized by adding the NOT gates according to the position of 1 in round constants. Secondly, the quantum circuit of S-box of the permutation is synthesized according to the classical circuit diagram of S-box. Then the linear layer functions are expressed in matrix form, and their quantum circuits are synthesized according to Gaussian elimination. Finally, we synthesize the whole quantum circuits according to the general diagrams of the authenticated encryption algorithm ASCON. The correctness of the quantum circuits of the S-box and the linear layer was verified by the Aer simulator of the IBM Quantum platform. As far as we know, this is the first implementation of the quantum circuits for the Authenticated Encryption with Associated Data (AEAD) of ASCON in-place. The maximum quantum resources for the three ASCON authenticated encryption algorithms were estimated. The quantum circuit of ASCON-128 uses a total of 320 qubits, 30,639 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits. The quantum circuit of ASCON-128a uses a total of 320 qubits, 23,558 NOT gates, 98,144 CNOT gates, 6144 Toffoli gates, 8192 measurements, and 4096 dynamic quantum circuits. The quantum circuit of ASCON-80pq uses a total of 320 qubits, 30,736 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05877-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuit diagrams ; Circuits ; Compilers ; Computer Science ; Gates (circuits) ; Gaussian elimination ; Interpreters ; Lightweight ; Mathematical analysis ; Permutations ; Processor Architectures ; Programming Languages ; Qubits (quantum computing) ; Synthesis ; Weight reduction</subject><ispartof>The Journal of supercomputing, 2024-05, Vol.80 (8), p.11322-11337</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-83f3a8c21f096a586c9d1a7e47e031fe0c34a25552aaf289f65bbc5f4b3f2b513</citedby><cites>FETCH-LOGICAL-c319t-83f3a8c21f096a586c9d1a7e47e031fe0c34a25552aaf289f65bbc5f4b3f2b513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05877-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05877-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zheng, Yuanmeng</creatorcontrib><creatorcontrib>Luo, Qingbin</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lv, Yi</creatorcontrib><title>Quantum circuit implementations of lightweight authenticated encryption ASCON</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>In this paper, we discuss the quantum circuit implementations of the lightweight authenticated encryption algorithm ASCON by using the NOT gates, CNOT gates, Toffoli gates, measurements, and the dynamic quantum circuits. Firstly, the quantum circuit of addition of constants is realized by adding the NOT gates according to the position of 1 in round constants. Secondly, the quantum circuit of S-box of the permutation is synthesized according to the classical circuit diagram of S-box. Then the linear layer functions are expressed in matrix form, and their quantum circuits are synthesized according to Gaussian elimination. Finally, we synthesize the whole quantum circuits according to the general diagrams of the authenticated encryption algorithm ASCON. The correctness of the quantum circuits of the S-box and the linear layer was verified by the Aer simulator of the IBM Quantum platform. As far as we know, this is the first implementation of the quantum circuits for the Authenticated Encryption with Associated Data (AEAD) of ASCON in-place. The maximum quantum resources for the three ASCON authenticated encryption algorithms were estimated. The quantum circuit of ASCON-128 uses a total of 320 qubits, 30,639 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits. The quantum circuit of ASCON-128a uses a total of 320 qubits, 23,558 NOT gates, 98,144 CNOT gates, 6144 Toffoli gates, 8192 measurements, and 4096 dynamic quantum circuits. The quantum circuit of ASCON-80pq uses a total of 320 qubits, 30,736 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits.</description><subject>Algorithms</subject><subject>Circuit diagrams</subject><subject>Circuits</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Gates (circuits)</subject><subject>Gaussian elimination</subject><subject>Interpreters</subject><subject>Lightweight</subject><subject>Mathematical analysis</subject><subject>Permutations</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Qubits (quantum computing)</subject><subject>Synthesis</subject><subject>Weight reduction</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rkq9k9lqJWqBZRzyGbJm1K98Mki-2_d-sK3rzMMMzzzsCD0DWBWwIg7yIhlMoMKMtA5FJm-xM0IkL2I8_5KRpBQSHLBafn6CLGLQBwJtkIPb92uk5dhY0PpvMJ-6rd2crWSSff1BE3Du_8epO-7LFi3aVNv_RGJ7vCtjbh0B5BPH2bLV8u0ZnTu2ivfvsYfTzcv8_m2WL5-DSbLjLDSJGynDmmc0OJg2KiRT4xxYpoabm0wIizYBjXVAhBtXY0L9xElKURjpfM0VIQNkY3w902NJ-djUltmy7U_UvFQBBBoCh4T9GBMqGJMVin2uArHQ6KgDpqU4M21WtTP9rUvg-xIRR7uF7b8Hf6n9Q3_ZJxkw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zheng, Yuanmeng</creator><creator>Luo, Qingbin</creator><creator>Li, Qiang</creator><creator>Lv, Yi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Quantum circuit implementations of lightweight authenticated encryption ASCON</title><author>Zheng, Yuanmeng ; Luo, Qingbin ; Li, Qiang ; Lv, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-83f3a8c21f096a586c9d1a7e47e031fe0c34a25552aaf289f65bbc5f4b3f2b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuit diagrams</topic><topic>Circuits</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Gates (circuits)</topic><topic>Gaussian elimination</topic><topic>Interpreters</topic><topic>Lightweight</topic><topic>Mathematical analysis</topic><topic>Permutations</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Qubits (quantum computing)</topic><topic>Synthesis</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yuanmeng</creatorcontrib><creatorcontrib>Luo, Qingbin</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lv, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yuanmeng</au><au>Luo, Qingbin</au><au>Li, Qiang</au><au>Lv, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum circuit implementations of lightweight authenticated encryption ASCON</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>80</volume><issue>8</issue><spage>11322</spage><epage>11337</epage><pages>11322-11337</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>In this paper, we discuss the quantum circuit implementations of the lightweight authenticated encryption algorithm ASCON by using the NOT gates, CNOT gates, Toffoli gates, measurements, and the dynamic quantum circuits. Firstly, the quantum circuit of addition of constants is realized by adding the NOT gates according to the position of 1 in round constants. Secondly, the quantum circuit of S-box of the permutation is synthesized according to the classical circuit diagram of S-box. Then the linear layer functions are expressed in matrix form, and their quantum circuits are synthesized according to Gaussian elimination. Finally, we synthesize the whole quantum circuits according to the general diagrams of the authenticated encryption algorithm ASCON. The correctness of the quantum circuits of the S-box and the linear layer was verified by the Aer simulator of the IBM Quantum platform. As far as we know, this is the first implementation of the quantum circuits for the Authenticated Encryption with Associated Data (AEAD) of ASCON in-place. The maximum quantum resources for the three ASCON authenticated encryption algorithms were estimated. The quantum circuit of ASCON-128 uses a total of 320 qubits, 30,639 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits. The quantum circuit of ASCON-128a uses a total of 320 qubits, 23,558 NOT gates, 98,144 CNOT gates, 6144 Toffoli gates, 8192 measurements, and 4096 dynamic quantum circuits. The quantum circuit of ASCON-80pq uses a total of 320 qubits, 30,736 NOT gates, 128,814 CNOT gates, 8064 Toffoli gates, 10,752 measurements, and 5376 dynamic quantum circuits.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05877-x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024-05, Vol.80 (8), p.11322-11337 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3051510994 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Circuit diagrams Circuits Compilers Computer Science Gates (circuits) Gaussian elimination Interpreters Lightweight Mathematical analysis Permutations Processor Architectures Programming Languages Qubits (quantum computing) Synthesis Weight reduction |
title | Quantum circuit implementations of lightweight authenticated encryption ASCON |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20circuit%20implementations%20of%20lightweight%20authenticated%20encryption%20ASCON&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Zheng,%20Yuanmeng&rft.date=2024-05-01&rft.volume=80&rft.issue=8&rft.spage=11322&rft.epage=11337&rft.pages=11322-11337&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05877-x&rft_dat=%3Cproquest_cross%3E3051510994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051510994&rft_id=info:pmid/&rfr_iscdi=true |